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Smart Concrete - Portland Cement Mortar with
Graphene Nano-Platelets (GnPs)

Mix Design | Specific Gravity | Weight (g/l) !
3.15 975

Type 1 cement

2.6 975
1.0 312
Megapol SP 1.19 1.95
1.3 2.44

PVA fiber 1.15 11.5



Conductivity of Smart Concrete

* Contacting: direct contact of neighboring nanoscale fillers (GnPs),
thus forming conductive links.

* Field emission: transmission conduction of electrons among the
disconnected but close enough GnPs. Electrons jump through the
energy barriers between GnPs in a cement-based matrix.

* lonic conduction: motion of ions in pore solution, ionic conductivity
varies in a particularly wide range when cement contains a substantial
amount of free water.

* Bridging: GnPs connecting pores filled with conductive pore fluid



Conductivity of Smart Concrete under Loading

* Change of intrinsic resistance of nanoscale fillers.

* Change of bonding between functional filler and matrix.
* Change of contact between nanoscale fillers.

* Change of tunneling distance between nanoscale fillers.

* Change of capacitance

Han et al. (2012) stated that the capacitance of cement-based
nanocomposites with carbon nanotubes is insensitive to an external force



Conductivity
Measurements

Researchers have found
some usable electrical signals
to characterize the
electromechanical behavior
of cement-based
nanocomposites, including
electrical resistance or
resistivity, electrical
reactance, capacitance,
relative dielectric constant,
and electrical impedance
tomography (EIT).




Research Objectives

e 4-probe AC with a Resipod (industry-standard method)

e Essentially EIT but with data processing

e Condition Detection: age, moisture, hydration, and stresses
 Damage detection - Currently only cracking with SC skin

* From R readings to back guess damage? Need machine learning
* Constitutive models for FE multi-physics analysis

* FE Analyses can predict the resistivity of beams and slabs

* Laboratory tests to verify FE analyses
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Smart Concrete with GnPs — in Tension
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Smart Concrete with GnPs — in Tension

 The resistivity of the material (p)
was 10.264 kQ-cm when the strain
was zero
 The resistivity of the material
increased approximately linearly p = po(l+ Kse)
to 11.545 kQ-cm when the tensile
strain increased to 6,030 ue.
* K. Is 20 kQ-cm/mm/mm from a
linear regression analysis.




Smart Concrete with GnPs —in Compression

standard 50-mm cube specimen
The electrical resistance of the
samples was measured using a
Resipod surface resistivity meter
for concrete from Proceq®
4-probe AC @ 40 Hz

Plate electrodes were used with a
resistor of 5 kilohm separating the
current probes and potential probes
A geometry factor (Kg) of 1.0 as
the electrodes covered the whole
faces




Compressive stress (MPa)

Smart Concrete with GnPs —in Compression
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Smart Concrete with GnPs —in Compression

 The resistivity of the material (p)
was 10.264 kQ-cm when the strain
was zero
 The resistivity of the material
increased approximately linearly p = po(l+ Kse)
to 11.545 kQ-cm when the tensile
strain increased to 6,030 ue.
* K, is 200 kQ-cm/mm/mm from a
linear regression analysis.
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Resistivity at Grids (kilohm-cm)
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Smart Concrete Slabs — Resistivity Measurement
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Smart Concrete Slabs — Geometry Corrections
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Smart Concrete Slabs — Laboratory Test




Smart Concrete Slabs — Finite Element Analysis
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Smart Concrete Slabs — Simulated Stress Sensing
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Smart Concrete Slabs — Damage Sensing
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1915-Wenner A method for measuring earth resistivity
1954! Valdes Resistivity Measurements on Germanium for Transistors.pdf
1955-Uhlir The Potentials of Infinite Systems of Sources.pdf
e e r e n C e S 1958-Smits Measurement of Sheet Resistivities using Four-Point Probe.pdf
1960-Hansen On the influence of shape and variations in conductivity of the sample on four-point measurements.pdf
1960-Hansen The influence of Shape on Four Point Measurement.pdf
1966-Haldor Topsoe_Geometric Factors in Four Point Resistivity Measurement.pdf
1996-Morris PRACTICAL EVALUATION OF RESISTIVITY OF CONCRETE.pdf
2000-Polder Test methods for on site measurement of resistivity of concrete.pdf
2001-Wen Uniaxial compression in carbon fiber reinforced cement sensed by electrical resistivity measurement in longitudinal and transverse directions.pdf
2004-Smith development-of-a-rapid-test-for-determining-the-transport-properties-of-concrete.pdf
2008-Newlands Sensitivity of electrode contact solutions and contact pressure in assessing electrical resistivity of concrete.pdf
2009-Hou Electrical Impedance Tomographic Methods for Sensing Strain Fields.pdf
2011_Han Nickel particle-based self-sensing pavement for vehicle detection.pdf
2011-Spragg Variability Analysis of the Bulk Resistivity Measured Using Concrete Cylinders.pdf
2012-Ardani Surface Resistivity Test Evaluation as an Indicator of the Chloride Permeability of Concrete.pdf
2013- Saafi Multifunctional properties of carbon nanotube/fly ash geopolymeric nanocomposites.pdf
2013-Peyvandi Enhancement of the durability characteristics of concrete using Graphene.pdf
2013-Spragg Factors That Influence Electrical Resistivity Measurements in Cementitious Systems.pdf
2014-Hallaji A new sensing skin for qualitative damage detection in concrete elements with electrical resistance tomography.pdf
2015-Layssi Electrical Resistivity of Concrete
2015-McCarter Two-point concrete resistivity measurements
2016-D'Alessandro Nanotube cement-matrix composites for SHM.pdf
2017_Chen Mechanical and smart properties of carbon fiber and graphite conductive concrete for internal damage monitoring of structure.pdf
2017_Erdem Self-sensing damage assessment and image-based surface crack quantification of carbon nanofibre reinforced concrete.pdf
2017-Azarsa Electrical Resistivity of Concrete for Durability Evaluation - A Review
2017! Downey Automated crack detection in conductive smart-concrete structures
2017-Konsta-Gdoutos Effect of CNT and CNF loading on conductivity and mechanical properties of nanomodified OPC mortars.pdf
2017-Proceq Resipod Family_Operating Instructions
2018-Aza Self Sensing Capability of Multifunctional Cementitious Nanocomposites.pdf
2018-Belli Evaluating the Self-Sensing Ability of Cement Mortars Manufactured with Graphene Nanoplatelets.pdf
2018-Du Mechanical Response and Strain Sensing of Cement Composites Added with Graphene Nanoplatelet under Tension.pdf
2018-Ge Piezoresistivity of Carbon Nanotube-Cement Composite.pdf
2018-Hambley Electrical Engineering book.pdf
2018-Meoni Strain Sensitivity of Smart Concrete Sensors Doped with Carbon Nanotubes
2018-Renvindran Effects of Graphene Nanoplatelet on the AC Electrical Conductivity of Epoxy Nanocomposites
2018-Wong Effects of Ultra-low Concentrations of Carbon Nanotubes on the Electromechanical Properties.pdf
2018-Wotring Characterizing the dispersion of graphene nanoplatelets in water with water reducing admixture.pdf
2019 _Tian A state-of-the-art on self-sensing concrete Materials fabrication and properties.pdf
2019-Torgal Nanotechnology in eco-efficient construction materials (book)
2020-Cosoli Electrical Resistivity and Electrical Impedance Measurement in Mortar and Concrete Elements.pdf
2020-Cosoli Electrical Resistivity and Electrical Impedance Measurement.pdf
2020-DAlessandro Nanotechnology in cement-based construction (book).pdf






Existing Technologies on Smart Concrete
Measurements:



2001 (Wen and Chung)  sprebenc
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Fig. 1. Sample configuration for measuring the transverse electrical resistivity during uniaxial compression.




2009 (Hou and Lynch)
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2009 (Hou and Lynch)
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2012 (Hoheneder and Sobolev)

Reference CNF PVA-
Composition FRC FRC
W/C 0.3 0.3
S/C 0.5 0.5
SP, % w cement 0.125 0.125
PVA fibers, % vol 3 3
Carbon nanofibers,
%vol 0 0.2

a) 5 min b) 10 min ¢) 15 min d) 20 min




2013 (Saafi et al.) t-probe AC

Fig. 4. Experimental setup. (a) Mechanical and piezoresistive characterization and (b) electrical characterization.



2014 (Halaji) EIT: Electrical Impedance Tomography
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Fig. 6. (a) Photograph of the notched beam, (b) load versus Crack Mouth Opening Displacement (CMOD) curve of the notched beam.
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2016 (D'Alessandro et al.) 4-probe DC and AC

A. D'Alessandro et al. /| Cement and Concrete Composites 65 (2016) 200—213
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2016 (D'Alessandro et al.) 4-probe DC and AC
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Fig. 5. a) Test set-up for strain sensing assessment of the composite materials; b) detailed view of coaxial cables connected to the net electrodes of the sample.
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2016 (Gupta et al.)
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Figure 11.5 Damage detection tests were performed on the concrete plates cast using large

aggregates coated with MWCNT-latex thin films (Gupta et al., 2016).
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2018 (Meoni et al.)

4-probe DC
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2018 (Aza)

4-Probe DC

Fig. 1. Experimental setup for measuring the electrical resistance under compressive load



2020 (Laflamme and Ubertinil)2-Probe AC, LCR meter @ 100k Hz

Figure 3.5 Experimental configuration. (a) Cementitious sensor installed in the universal testing machine and



What are we trying to achieve?
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Figure 11.8 Typical sensing behavior of ISSC under loading (Han et al., 2015d).
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