

Aggregate Morphology in Cement-Based Materials

Chang Hoon Lee

Moochul Shin

@ Western New England University

Seung Jae Lee

@ Florida International University

WHY?

Influence of Aggregate Shapes

- No fine aggregate
- Maximum strength vs. Resilience from pseudo-cyclic loadings.
- CD. Crushad / Dl. Divor (Dound)

5

6

2

3

4

Strain (mm/mm)

(b)

CR

RI

7

8

 $\times 10^{-3}$

[Lee et al., 2019]

WHY?

2D Morphology Parameters:

- Sphericity
- Roundness
- Regularity

3D Morphology Parameters:

- Volume
- Surface area
- "True" Sphericity [Wadell, 1932]

2D Morphology Parameter

Area sphericity : $S_A = \frac{A_s}{A_{cir}}$ Diameter sphericity : $S_D = \frac{D_c}{D_{cir}}$ Circle ratio sphericity : $S_C = \frac{D_{ins}}{D_{cir}}$ Perimeter sphericity : $S_P = \frac{P_c}{P_s}$ Width to length ratio sphericity : $S_{WL} = \frac{d_2}{d_1}$ Roundness : $RD = \frac{\sum_{i} (r_i / r_{max})}{N}$

- ASTM D4791: Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles
- Aggregate Image Measurement System (AIMS)

2D Morphology Parameter - Issues

[Lee et al., 2022]

(a) Particle CO

(b) Particle CF

(c) Particle RO

2D Morphology Parameter - Issues

Variability according to projection angles

3D Morphology Parameter

"True" Sphericity [Wadell, 1932]

$$\psi = \frac{A_{eq}}{A}$$

$$0 \le \psi \le 1$$
M-A-V-L [Su et al., 2020]
$$M = \frac{AL}{6V}$$

$$1 \le M < \infty$$

3D Morphology Parameter - Measurement

Structured Light Scanning

Collect Point Clouds

Acquire point clouds from Multiple angles

Reconstruction of 3D model by photogrammetry

Figure by https://blog.medit.com/medit/what-isstructured-light-scanning

- Polyga FlexScan3D C504
- Resolution: 6 microns (i.e., distance between a point-to-point)

3D Models from SLS

- 3D Models obtained from Structured Light Scanning
- 5 different coarse aggregates from a local quarry (Chicopee, MA)

3D Parameters from SLS - Individual Particles

• Different Morphology Parameters

Which "L" must be used?

ASTM E11: Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves

3D Parameters from SLS - Individual Particles

• Different Morphology Parameters

Group Particle Morphology

• Power Law to obtain the group 3D morphology parameter [Lee et al., 2022]

 $|a|{>}3:$ Larger particle \rightarrow More angular

Group Particle Morphology

- Results from 500+ samples
- 5 different groups of coarse aggregates available in Western MA

- *α* : Degree of Morphology Uniformity in Group
- β*: Group Morphology Parameter

Current Practice of Mixture Design

- ACI 211.1
 - Maximum (coarse) aggregate size: Water Content, Bulk Volume of Coarse Aggregate, Required air content for Freeze-and-Thaw.
 - Fineness Modulus: Bulk Volume of Coarse Aggregate.
 - Use of round aggregate: Reduce water contents by 8%.
- ACI 302.1R
 - Guidelines for the gradings of fine, coarse, and the combined aggregates for floor and slab construction
- ACI 325.14
 - Guideline for the grading of the combined aggregates for pavement.
 - Shilstone Coarseness Factor Chart, 0.45 power plot,
 - Limit the maximum flat/elongated aggregate (15 to 20%)

1D Morphology (i.e., Size) has been used for the references.

Estimation of 3D Parameters from 1D Information

Research in Progress

- Possible to reduce the time for measuring 3D morphology parameters?
 - Efficient Convolutional Neural Network (ECNN)
 - Take 2D images by Mobile platform (Pad, Phone)
 - **ECNN** algorithm will estimate 3D morphology parameters. (e.g., β)
 - Collected 3D morphology parameters used for build V and A/V

Research in Progress

- Influence of Aggregate Morphology on Mechanical/Rheological Properties of Cement-Based Materials
 - 3D Printing Particles
 - Selecting the particle out of database according to the controlled morphology parameter.
 - Require No supports in printing / No chemical reaction with paste matrix.

3D Printed Particles (Gypsum)

3D Printed Particles (Resin)

All Finished!

didas.

Research in Progress

- Measurement of volume and surface area of Fine Aggregates
 - Surface area produced by fine aggregates greater than that by the coarse.
 - Correlation to Fineness Modulus (i.e., average size of fine aggregate)
 - Standard Method: ASTM C136
 - Functional type: $D = 2^{FM} \overline{D}_{N+1}$ where D_{N+1} = the average sieve size of #100 and #200.
 - Maybe possible to use a Micro computerized tomography (Micro CT)
 - Morphology change tracking in comminution process. (Abrasion vs. Breakage)