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Optimization? Wiy ?

DECISION MAKING Aa

)8

Due to complexity and to stay in competitive
edge, decision making must be in a rational
and optimal way

Decision making is everywhere

Problem formulation,
Problem modeling,
Problem optimization and
Solution implementation

Formulate
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Complexity?

Complexity of Algorithms
oV @
An algorithm needs two important resources to g 9 c.)(3(3\} 0‘6
VA
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W, Iraveling Salesman Problem

o

‘-?'\_-5; Problem: “What is the shortest possible route
\ / that visits each city exactly once and returns to

C / (n—1)! ,
\ |Q| = === for a symmetric problem

Enumeration algorithm: O(n!)

5 12 12 us Calculate the length of tours
Find the tour with the minimum distance

the origin city?”

Q: Set of permutations of n elements

/i' Data: n cities; Distance matrix D=(d,-j)

10 181400 0.18 s
20 6E16 19 cen. 1 us for evaluating each tour

30 4E30 1.4E15 cen.
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Computer Methods in Applied Mechanics and

< ¢ JEN Engineering
. . . Expan o .
Expert Systems with Applications N Volume 417, Part A, 1 December 2023, 116446
Available online 23 October 2023, 122200 =
In Press, Journal Pre-proof  (§) What's this? = i |

Quadratic Interpolation Optimization (QIO):
Electric Eel Foraging Optimization: A new A new optimization algorithm based on
zgllilgzgiléig optimizer for engineering generalized quadratic interpolation and its
applications to real-world engineering
problems

Optimizing Truss Structures Using Composite Materials under Natural

Frequency Constraints with a New Hybrid Algorithm Based on Cuckoo . . -
. . o Expert Systems with Applications -

Search and Stochastic Paint Optimizer (CSSPO) R Available online 18 October 2023, 122147 e

by @ Nima Khodadadi " = ©, €) Ehsan Harati = @) Francisco De Caso = and ) Antonio Nanni & In Press, Journal Pre-proof () What's this? 7 i

Greylag Goose Optimization: Nature-
inspired optimization algorithm

Englnesring with Computers (2022) 38:1921-1952
hittps://dol.org/10.1007/00366-020-01179-5

ORIGINAL ARTICLE

Stochastic paint optimizer: theory and application in civil engineering
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Optiimizaton NMethods

Complete methods: find always a particular solution
Exact methods: obtain optimal solutions and guarantee their optimality
Approximate (or heuristic) methods: generate high quality solutions in a reasonable

time for practical use, but there is no guarantee of finding a global optimal solution

Optimization Methods

v ¥
Exact Methods Approximate Methods
|
x b r o —
Branch & X Cunstralr:ut Dynamn‘: HEUEIS‘I:IC Approxfmatlun
Programming || Programming Algorithms Algorithms
[
¥
Problem-specific
Heuristics

Single-solution based Population based
Metaheuristics Metaheuristics
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Metaheuristic algerithm?

Heuristic (from an old Greek word heuriskein):

“the art of discovering new strategies (rules) to solve problems”

Meta (a Greek word):

“upper level methodology”

Metaheuristic:

“Upper level general methodologies that can be used as guiding strategies in designing
underlying heuristics to solve specific optimization problems”
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» Exploration vs. Exploitation
- Exploration of the search space (Diversification) and Exploitation of the best solutions found
(Intensification)
- Good solutions are clue for promising regions

In intensification, the L _‘ In diversification, non-
promising regions are . explored regions must be

explored more thoroughly visited to be sure that all

in the hope to find better regions of the search
space are evenly explored

solutions
and to avoid from local
optima traps
Local Search Single-solution based Population-based Random Search
Algorithms Algorithms
- t } >
Diversification

Intensification

Best algorithms
are good in both
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Nature inspired vs. Non-nature inspired
Biology: Genetic Algorithm or Artificial Immune Systems
Swarm Intelligence: Ants or Bees Colony Optimization, Particle Swarm Optimization, Frog
Leaping algorithm, ...
Physics: Simulated Annealing Algorithm
Social Behavior. Imperialist Competitive Algorithm, Teacher Learning Algorithm, ...

Memory usage vs. Memoryless
Local Search, GRASP, Simulated Annealing
Tabu Search: short-term and long-term memories

Deterministic vs. Stochastic
Deterministic: Optimization problem is solved by making deterministic decisions (e.g., LS &
TS). Same initial solution will lead to the same final solution
Stochastic: Optimization problem is solved by some random rules (e.g., SA & GA). Different
final solutions may be obtained from the same initial solution.

Population-based vs. Single-solution based
Iterative vs. Greedy (Constructive)

Starting from a complete solution vs. starting from an empty solution

[ 4
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Ants are able, without using any spatial Information, to identify a sudden appearance of
a food source around their nest, and to find the shortest available path to it.

Let us describe the algorithm:

A small amount of ants travel
randomly around the nest.

et
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Ants are able, without using any spatial Information, to identify a sudden appearance of
a food source around their nest, and to find the shortest available path to it.

One of the ants find food source.

-
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When ant finds food, it returns to
the nest while laying down
pheromones trail.
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Ants are able, without using any spatial Information, to identify a sudden
appearance of a food source around their nest, and to find the shortest
available path to it.

When other ants find a pheromone trail,
they are likely not to keep travelling at
random, but to instead follow the trail.
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ANE©®

Ants are able, without using any spatial Information, to identify a sudden
appearance of a food source around their nest, and to find the shortest
available path to it.

Due to their stochastic behavior,
some ants are not following the
pheromone trails, and thus uncover
more possible paths.

e Jesfe e

et

UNIVERSITY gon
~* CONCRETE



Ants are able, without using any spatial Information, to identify a sudden
appearance of a food source around their nest, and to find the shortest
available path to it.

Shortest path is being obtained.

e\
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ANE©®

Ants are able, without using any spatial Information, to identify a sudden
appearance of a food source around their nest, and to find the shortest

available path to it.

Over time, however, the pheromones
trails starts to evaporate, thus
reducing its attractive strength.
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Cuckoo Search ancd SPO)

Materials GFRP CFRP STEEL
Member Group SPO CSSPO SPO CSSPO SPO CSSPO
1(A1-Ay) cm? 13.3972 4.7702 1.4932 1.4932 1.4932 1.1560
2 (As-Aqn) cm? 9.4481 9.9981 3.4486 3.4486 3.4486 2.6751
3 (A13-A1e) cem? 0.6450 0.6450 0.6450 0.6450 0.6450 0.6450
4 (A17-Aqg) cem? 0.6724 0.7181 0.6450 0.6450 0.6450 0.6450
5 (A19-Ago) cm? 12.0096 10.5253 34111 34111 3.4111 2.6876
6 (Az3-Azp) cm? 11.3740 10.0562 3.5042 3.5042 3.5042 2.6555
7 (Az1-Asg) cm? 0.6450 0.6450 0.6450 0.6450 0.6450 0.6450
8 (Az5-Asg) cm? 0.6450 0.6450 0.6450 0.6450 0.6450 0.6453
9 (Az7-Agp) cm? 13.6289 16.9763 5.7274 5.7274 5.7274 42783
10 (Ag1-Agg) cm? 8.6208 10.0865 3.5086 3.5086 3.5086 2.6824
11 (Ag9-Asp) cm? 0.6450 0.6450 0.6450 0.6450 0.6450 0.6450
12 (As3-Asy) cm? 0.6450 0.6450 0.6450 0.6450 0.6450 0.6452
13 (As5-Asg) cm? 20.0000 20.0000 7.3112 7.3112 7.3112 5.6892
14 (As9-Agg) cm? 11.2354 9.9604 3.4397 3.4397 3.4397 2.7112
15 (Agr-Azg) cm? 0.6450 0.6450 0.6450 0.6450 0.6450 0.6450
16 (Ay1-Azr) cm? 0.6450 0.6450 0.6450 0.6450 0.6450 0.6450
Best weight (kg) 236.0334 227.2641 103.4361 94.8585 356.0184 337.7553
Average weight (kg) 268.0583 227.3044 129.3833 94.8953 472.1857 337.8333
Standard deviation 23.0932 0.0311 18.6853 0.0271 65.8768 0.0600
3 i i No. Analyses 19,100 6900 6800 4900 4150 4050
1=1524m - B + % Aditional Masses
400 Truss 72-Member with GFRP Materials 300 Truss 72-Member with CFRP Materials 1400 Truss 72-Member with Steel Materials
== = == CSSPO = === CSSPO === CSSPO
SPO SPO SPO
350 250 1200
% Em % 1000
= = 200 =
Q < (]
= 300 s = 800
2 2 150" 2
3 H K 2 600
250\
L, 100} Yo D= - 400
B ———
200 50 200
100 200 300 400 100 200 300 400 100 200 300 400

Iterations Iterations Iterations -
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Naive Bayes Support Vector
Classifier Machine
Algorithm Algorithm

Artificial Neural
Networks

P(B/A) P (A) |
P(A/B) = —— z=0y+ozl={ ~ Tyt

ozl =1

Using Metaheuristic Algorithm
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Predicting the flexural strength of 3D printed fiber-reinforced concrete
(3DP-FRC) using efficient training of artificial neural networks with the
meta-heuristic algorithm

MGO Convergence Curve
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R°=0.9716 for normalized train data i R=0.9643 for normalized test data
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GUI

& =) flexural strength 3DP-FRC
Ordinary Portland cement (OPC) | 655
Sand (S) 246
Water/Binder Ratio (W/b) 0.2636
Fly Ash (FA) 604
Ground Slag (GS) 0
Silica Fume (SF) 118
Superplasticizer (SP) 3.5
Hydroxypropyl methyicellulose (HPMC) 0
Water (W) 363
Fiber Volume fraction (Fvolf) 0.01 Predicting the flexural strength of 3D printed fiber-reinforced
Aspect Ratio of Fiber (L{/Df) 480 concrete (3DP-FRC) using MGO-ANN
Diameter of Fiber (Df) 25 lj UNIVERSITY
Length of Fiber (Lf) 12
Loading Direction (LD) Ox @bz ®z
Fiber Type (Ftype)

(®) Polyethylene () Steel () Polyvinyl Alcohol () Polypropylene () Basalt

Click to Predict Flexural Strength (MPa) 15.60

Click for More Inormation
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