Meta-Heuristic Optimization Algorithm: Effective Machine Learning Techniques for Concrete Structures

Civil Engineering

Team

Computer Science

Antonio Nanni

Cited by	VIEW	
	All	Since 2018
Citations	28037	12542
h-index	83	56
i10-index	411	254

Cited by

•		
	All	Since 2018
Citations	1031	1031
h-index	19	19
i10 indov	21	21

Seyedali Mirjalili

Cited by

	All	Since 2018
Citations	88545	84507
h-index	100	100
i10-index	351	343

Francisco De Caso

Yelena Yesha

Cited by		VIEW ALL
	All	Since 2018
Citations	6708	1033
h-index	38	17
i10-index	100	31

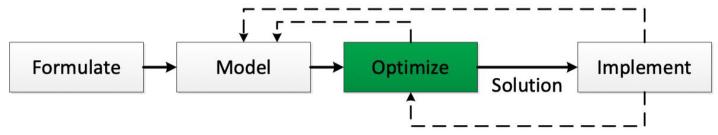
Optimization? Why?

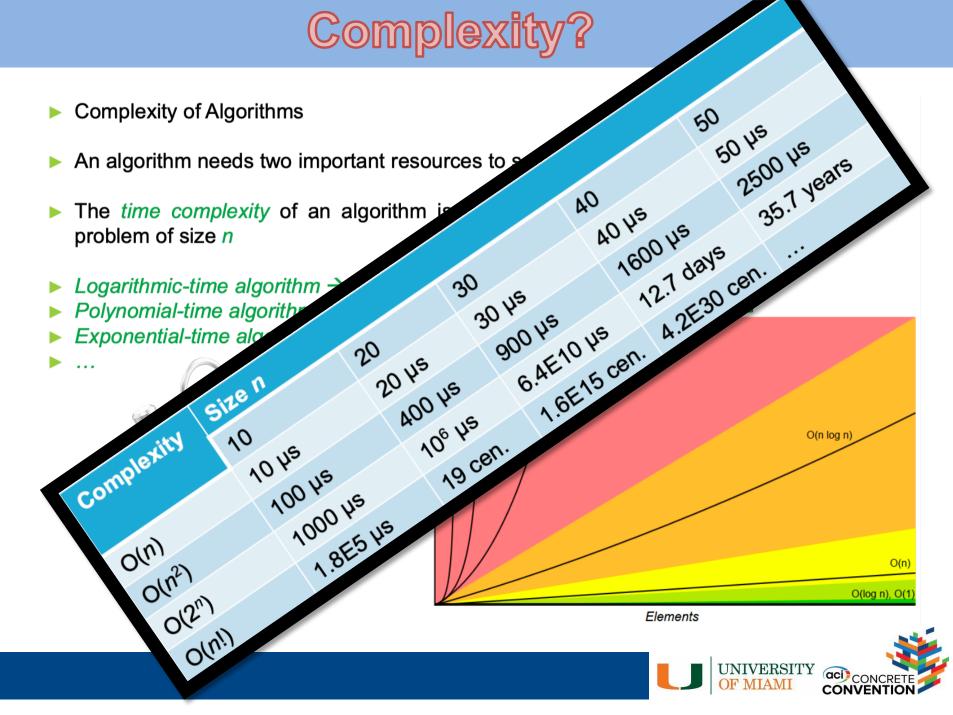
DECISION MAKING

Decision making is everywhere

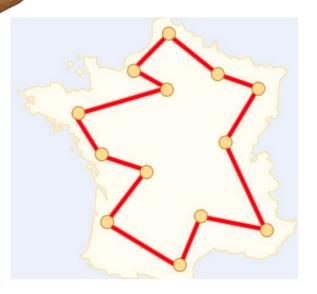
Due to complexity and to stay in competitive edge, decision making must be in a rational and optimal way

- Problem formulation,
- Problem modeling,
- Problem optimization and
- Solution implementation





Traveling Salesman Problem



n	Ω	CPU Time
5	12	12 µs
10	181400	0.18 s
20	6E16	19 cen.
30	4E30	1.4E15 cen.

- ▶ Data: n cities; Distance matrix $D=(d_{ii})$
- ▶ Problem: "What is the shortest possible route that visits each city exactly once and returns to the origin city?"
- \triangleright Ω : Set of permutations of *n* elements
- $|\Omega| = \frac{(n-1)!}{2}$ for a symmetric problem
- ► Enumeration algorithm: O(n!)
 - Generate all possible tours
 - Calculate the length of tours
 - Find the tour with the minimum distance
- 1 µs for evaluating each tour

ORIGINAL ARTICLE

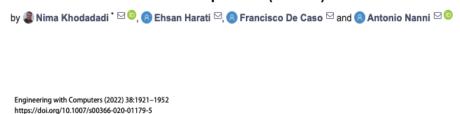
Expert Systems with Applications

Available online 23 October 2023, 122200

In Press, Journal Pre-proof (?) What's this? 7

Electric Eel Foraging Optimization: A new bio-inspired optimizer for engineering applications

Optimizing Truss Structures Using Composite Materials under Natural Frequency Constraints with a New Hybrid Algorithm Based on Cuckoo Search and Stochastic Paint Optimizer (CSSPO)



Stochastic paint optimizer: theory and application in civil engineering

Computer Methods in Applied Mechanics and Engineering

Volume 417, Part A, 1 December 2023, 116446

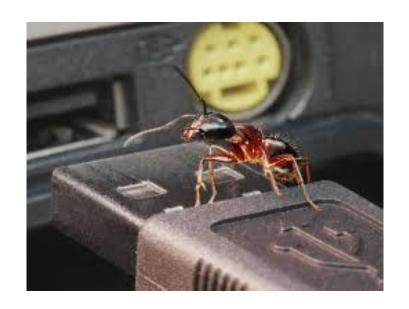
Quadratic Interpolation Optimization (QIO): A new optimization algorithm based on generalized quadratic interpolation and its applications to real-world engineering problems

Expert Systems with Applications

Available online 18 October 2023, 122147

In Press, Journal Pre-proof ? What's this?

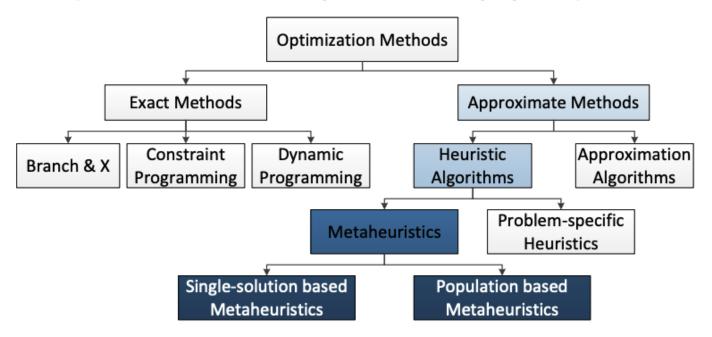
Greylag Goose Optimization: Natureinspired optimization algorithm



hippopotamus

Optimization Methods

- Complete methods: find always a particular solution
- Exact methods: obtain optimal solutions and guarantee their optimality
- Approximate (or heuristic) methods: generate high quality solutions in a reasonable time for practical use, but there is no guarantee of finding a global optimal solution



Metaheuristic algorithm?

Heuristic (from an old Greek word heuriskein):

"the art of discovering new strategies (rules) to solve problems"

Meta (a Greek word):

"upper level methodology"

Metaheuristic:

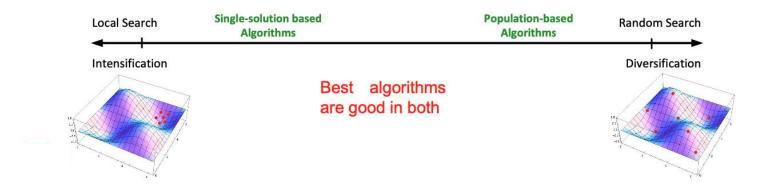
"Upper level general methodologies that can be used as guiding strategies in designing underlying heuristics to solve specific optimization problems"

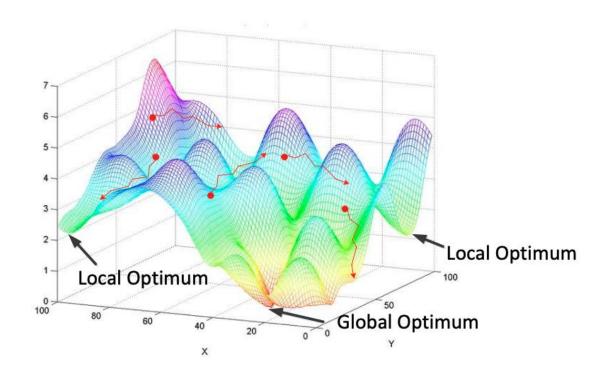
Exploration vs. Exploitation

- Exploration of the search space (*Diversification*) and Exploitation of the best solutions found (*Intensification*)
- Good solutions are clue for promising regions

In intensification, the promising regions are explored more thoroughly in the hope to find better solutions

In diversification, nonexplored regions must be visited to be sure that all regions of the search space are evenly explored and to avoid from local optima traps





Nature inspired vs. Non-nature inspired

- Biology: Genetic Algorithm or Artificial Immune Systems
- Swarm Intelligence: Ants or Bees Colony Optimization, Particle Swarm Optimization, Frog Leaping algorithm, ...
- Physics: Simulated Annealing Algorithm
- Social Behavior: Imperialist Competitive Algorithm, Teacher Learning Algorithm, ...

Memory usage vs. Memoryless

- Local Search, GRASP, Simulated Annealing
- Tabu Search: short-term and long-term memories

Deterministic vs. Stochastic

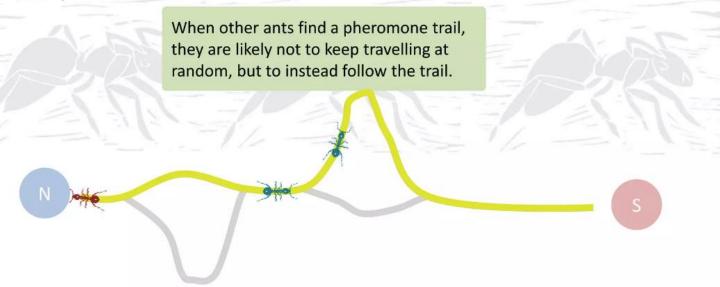
- Deterministic: Optimization problem is solved by making deterministic decisions (e.g., LS & TS). Same initial solution will lead to the same final solution
- Stochastic: Optimization problem is solved by some random rules (e.g., SA & GA). Different final solutions may be obtained from the same initial solution.
- Population-based vs. Single-solution based
- Iterative vs. Greedy (Constructive)
 - Starting from a complete solution vs. starting from an empty solution

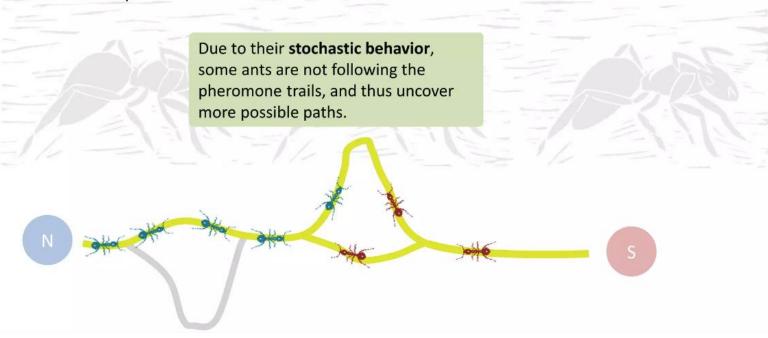
Let us describe the algorithm:

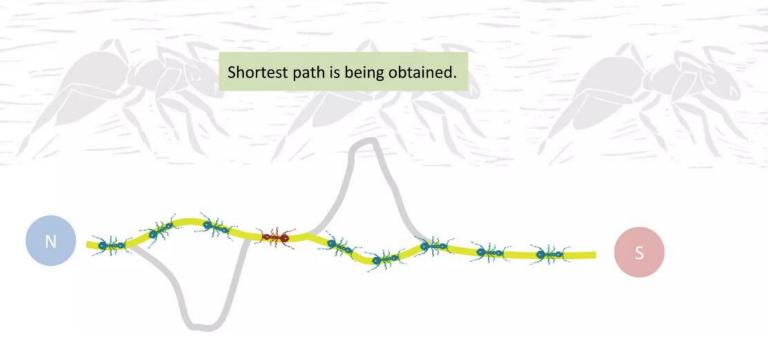
A small amount of ants travel randomly around the nest.

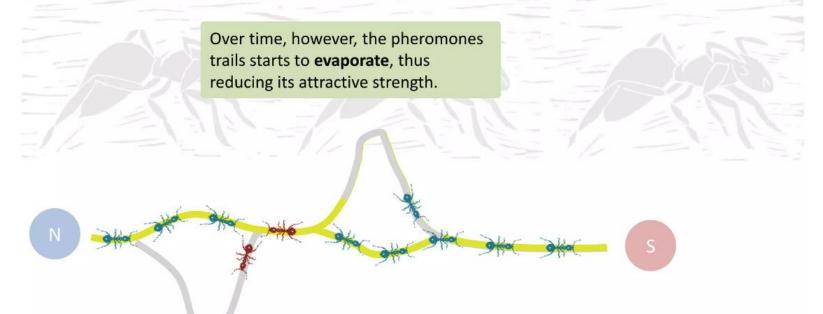
One of the ants find food source.

When ant finds food, it returns to the nest while laying down pheromones trail.

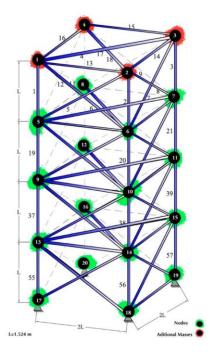




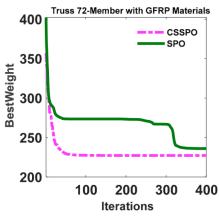


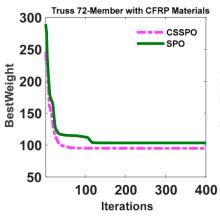


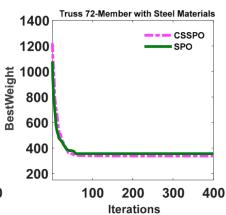
Cuckoo Search and SPO



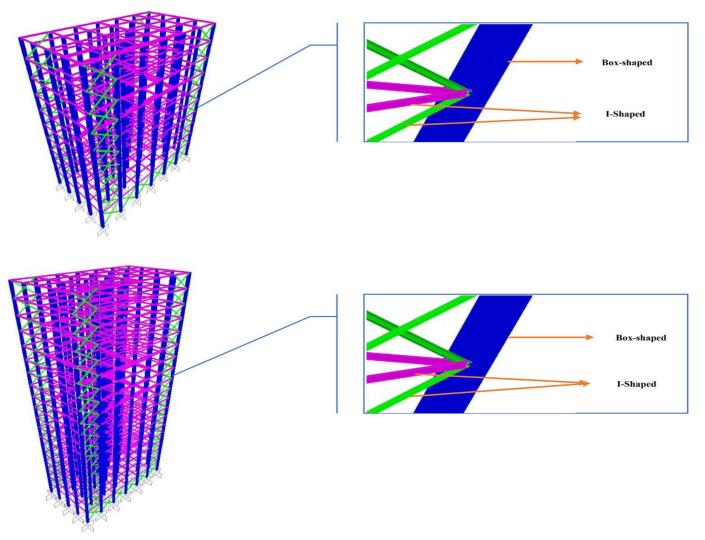
Materials	GI	FRP	CF	FRP	STE	EL
Member Group	SPO	CSSPO	SPO	CSSPO	SPO	CSSPO
1 (A ₁ -A ₄) cm ²	13.3972	4.7702	1.4932	1.4932	1.4932	1.1560
$2 (A_5 - A_{12}) \text{ cm}^2$	9.4481	9.9981	3.4486	3.4486	3.4486	2.6751
$3 (A_{13}-A_{16}) cm^2$	0.6450	0.6450	0.6450	0.6450	0.6450	0.6450
$4 (A_{17}-A_{18}) cm^2$	0.6724	0.7181	0.6450	0.6450	0.6450	0.6450
$5 (A_{19}-A_{22}) cm^2$	12.0096	10.5253	3.4111	3.4111	3.4111	2.6876
$6 (A_{23}-A_{30}) \text{ cm}^2$	11.3740	10.0562	3.5042	3.5042	3.5042	2.6555
$7 (A_{31}-A_{34}) \text{ cm}^2$	0.6450	0.6450	0.6450	0.6450	0.6450	0.6450
$8 (A_{35}-A_{36}) \text{ cm}^2$	0.6450	0.6450	0.6450	0.6450	0.6450	0.6453
$9 (A_{37}-A_{40}) \text{ cm}^2$	13.6289	16.9763	5.7274	5.7274	5.7274	4.2783
$10 (A_{41}-A_{48}) \text{ cm}^2$	8.6208	10.0865	3.5086	3.5086	3.5086	2.6824
$11 (A_{49}-A_{52}) \text{ cm}^2$	0.6450	0.6450	0.6450	0.6450	0.6450	0.6450
$12 (A_{53}-A_{54}) \text{ cm}^2$	0.6450	0.6450	0.6450	0.6450	0.6450	0.6452
13 (A ₅₅ -A ₅₈) cm ²	20.0000	20.0000	7.3112	7.3112	7.3112	5.6892
$14 (A_{59}-A_{66}) \text{ cm}^2$	11.2354	9.9604	3.4397	3.4397	3.4397	2.7112
$15 (A_{67}-A_{70}) \text{ cm}^2$	0.6450	0.6450	0.6450	0.6450	0.6450	0.6450
$16 (A_{71}-A_{72}) \text{ cm}^2$	0.6450	0.6450	0.6450	0.6450	0.6450	0.6450
Best weight (kg)	236.0334	227.2641	103.4361	94.8585	356.0184	337.7553
Average weight (kg)	268.0583	227.3044	129.3833	94.8953	472.1857	337.8333
Standard deviation	23.0932	0.0311	18.6853	0.0271	65.8768	0.0600
No. Analyses	19,100	6900	6800	4900	4150	4050



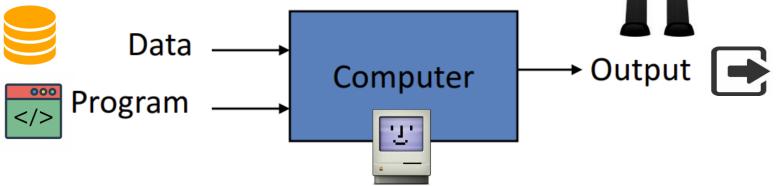




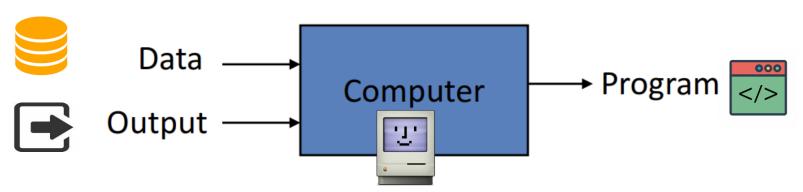
SPO



Traditional Programming



Machine Learning

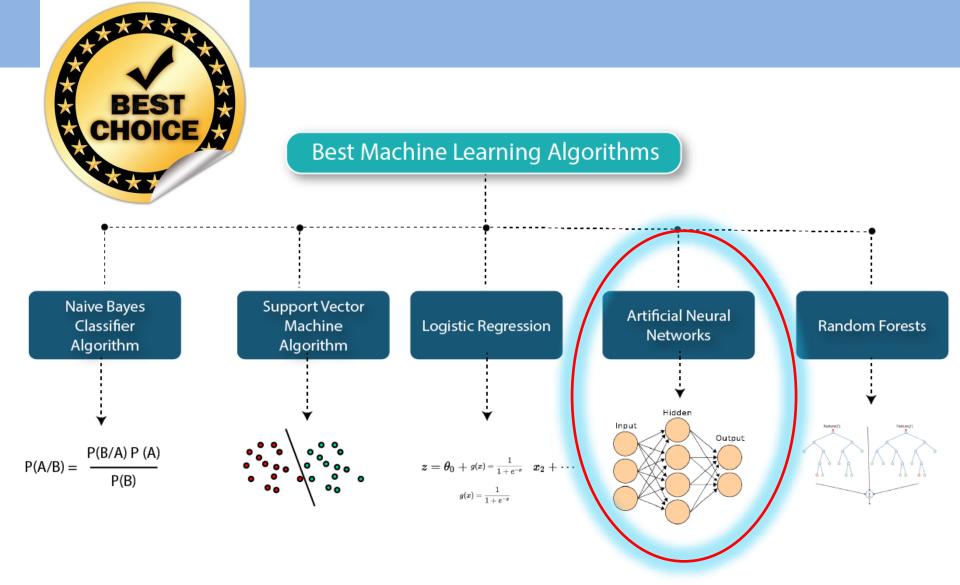


What's

the

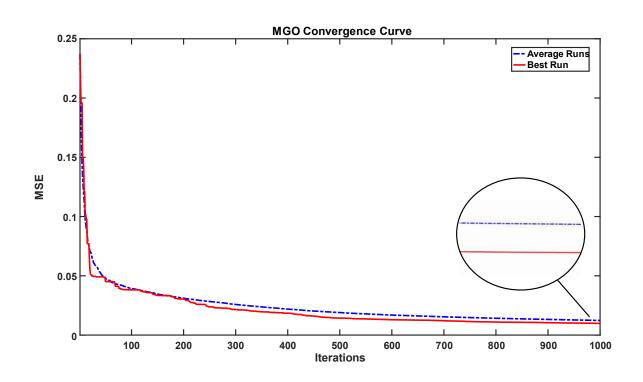
Difference

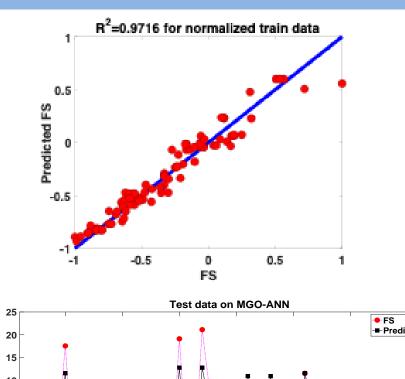
???

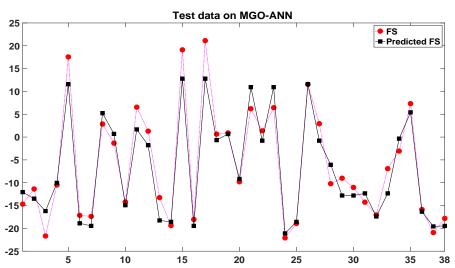


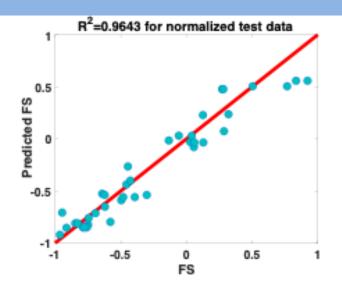
Using Metaheuristic Algorithm

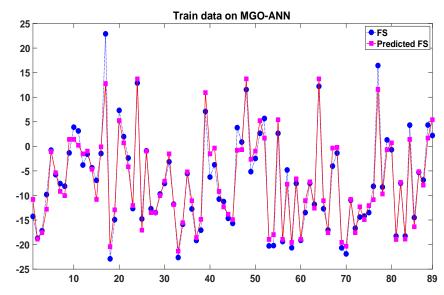
Predicting the flexural strength of 3D printed fiber-reinforced concrete (3DP-FRC) using efficient training of artificial neural networks with the meta-heuristic algorithm











flexural strength 3DP-FRC

Ordinary Portland cement (OPC)	655	
Sand (S)		246
Water/Binder Ratio (W/b)		0.2636
Fly Ash (FA)		604
Ground Slag (GS)		0
Silica Fume (SF)		118
Superplasticizer (SP)		3.5
Hydroxypropyl methylcellulose (HPMC)		0
Water (W)		363
Fiber Volume fraction (Fvolf)		0.01
Aspect Ratio of Fiber (Lf/Df)		480
Diameter of Fiber (Df)		25
Length of Fiber (Lf)		12
Loading Direction (LD)	OY	⊙ z

 Polyethylene Steel O Polyvinyl Alcohol O Polypropylene ○ Basalt

Click to Predict Flexural Strength (MPa)

15.60

Predicting the flexural strength of 3D printed fiber-reinforced concrete (3DP-FRC) using MGO-ANN

UNIVERSITY OF MIAMI

Hossein Roghani

Nima Khodadadi

El-Sayed M. El-kenawy Francisco DeCaso

Yelena Yesha

Antonio Nanni

Contact me

