Experimental and Analytical Study on the Shear Behavior of Ultra-High-Performance Concrete (UHPC) Considering Axial Load Effects

October 30, 2023

Dimitrios Kalliontzis, Ph.D.

Assistant Professor University of Houston Texas, USA

Graduate Students

Abdulrahman Salah, PhD Noran Shahin, MSc

ACI Fall 2023 – Research in Progress Session (CCC)

STRUCTURAL PERFORMANCE AND FLUID-STRUCTURE INTERACTION LAB

CULLEN COLLEGE of ENGINEERING

UNIVERSITY of HOUSTON

UHPC Properties

UHPC Mix at UH Structural Lab

UNIVERSITY of HOUSTON

Understanding UHPC Shear Behavior with the Universal Element Tester (UET) at UH

SPLAB

Test Setup of Panels

Shear Testing Procedure using UET

UNIVERSITY

HOUSTO

CULLEN COLLEGE of ENGINEERING

STRUCTURAL PERFORMANCE AND

FLUID-STRUCTURE INTERACTION LAB

17131710

¥

UHPC Panel Shear Test Program

FLUID-STRUCTURE INTERACTION LAB

CULLEN COLLEGE of ENGINEERING

Reinforced (with rebars)

Axial Effects in Structural Elements

Application of axial effects using the UET

The axial effects are

represented on the tested

element in UET as

transformed loads from the

actual structural elements

FLUID-STRUCTURE INTERACTION LAB

HOUS

Tensile and compressive

loads applied by UET

UET Modification for UHPC Shear Tests

Original UET setup

Double

STRUCTURAL PERFORMANCE AND **SPLAB** FLUID-STRUCTURE INTERACTION LAB

UNIVERSITY of HOUSTON CULLEN COLLEGE of ENGINEERING

Pure Shear Test Mechanism using UET

Before Loading

HOUSTON

STRUCTURAL PERFORMANCE AND FLUID-STRUCTURE INTERACTION LAB UNIVERSITY CULLEN COLLEGE of ENGINEERING

Unreinforced UHPC Panel Casting at UH Structural Lab

Reinforced UHPC Panel Casting at UH Structural Lab

UHPC Panel Casting at UH Structural Lab

SPLAB

UHPC Material Tests

UHPC Panel Ready to Test

Panel#2 - Test Results

CULLEN COLLEGE of ENGINEERING

South Side

Panel#4 - Test Results

SPLAB

CULLEN COLLEGE of ENGINEERING

All Panel Test Results – No Rebars

Fiber Orientation - Sampling

Core taken from the panel

Cut into halves

Fiber Orientation - Distribution

Fiber Orientation - Distribution

Softened Membrane Model for UHPC (SMM-UHPC)

Experimental data from Yap (2020)

Summary

- Effective use of UET for combining shear with axial load effects
- The use of pre-compression appears to have a significant effect on the shear behavior of UHPC (50% and nearly 100% increase with only 5% and 10% Axial Load Ratio in the Principal Compression Direction.
- Applying higher tensile forces (35% of f_t) reduced the shear strength significantly (37% reduction)
- Evaluation of fiber alignment from various specimens showed a relatively random distribution with a tendency for angles <45°.

The authors would like to thank John Lawler and Elizabeth Wagner from WJE for their support on characterizing the fiber alignment in the test specimens.