Using Machine Learning to Predict the Performance of Coal Ash in Concrete with the Bulk Oxide Content

Tyler Ley, PE, PhD
Shinhyu Kang, Taehwan Kim, Braden Boyd,
Zane Lloyd, Niloo Parastegari, Zhe Yu, Guoliang Fan

Acknowledgements

FHWA Exploratory Advanced Research

Illinois DOT

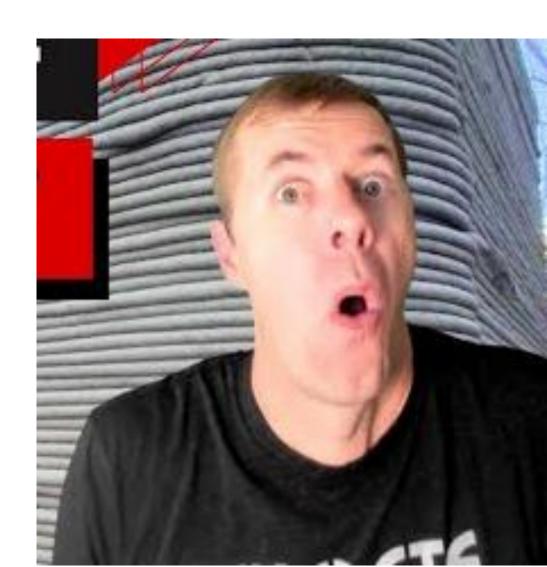
National Science Foundation

Kim Kurtis, Ga Tech
Lisa Burris, Ohio State
Cecil Jones, Diversified Engineering

Thoughts on Computational Tools

Thoughts on Computational Tools

All computational models are wrong, but they can give us insights that are not possible any other way.


- Zach Grasley

Thoughts on Computational Tools

Computational models that are based on the truth are powerful, but we need experiments to tell us the truth.

- Tyler Ley

Different types of models

- Statistical models
- Physics based
- •AI/ML

How do we create <u>useful</u> computational tools?

- 1. Ask a specific and reasonable question
- 2. Lots of useful data
- 3. Check the results and improve

Physics based model

- Pick a reasonable model with adjustable parameters
- Gather data
- Tune the adjustable parameters
- Check to see if it makes sense
- Revise

$$D_{ic}(t) = \left(\frac{A(t) \times CaO(\%) + B(t) \times Na_2O_e(\%)}{SiO_2(\%)}\right)$$

Physics based model

- Pick a reasonable model with adjustable parameters
- Gather data
- Tune the adjustable parameters
- Check to see if it makes sense
- Revise

se
$$\begin{array}{c} \text{adjustable} \\ \text{parameter} \\ \\ D_{ic}(t) = \left(\frac{A(t) \times CaO(\%) + B(t) \times Na_2O_e(\%)}{SiO_2(\%)} \right) \end{array}$$

Al models

Many AI models try and make precise predictions for a general system.

Unfortunately, you need millions of observations for this, and the results are often not accurate enough.

A different approach

What if we focused on grouping fly ash performance into high, medium, and low with respect to a control?

This will require less data and can still provide a useful tool.

What if we could do this by only using the bulk oxides?

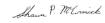
Client: Mr. Tom Hendrix The SEFA Group P.O. Box 6 Moneks Corner, SC 20461 TEC Services I.D.: TEC 06-0509 Lab No.: 20-556-MC

Moncks Corner, St	29461					
		REPORT OF FLY AS	SH TESTS			
		Date Sampled:	April 30, 2020			
Manufacturer: M	cMeekin Station (7	Thermally Beneficiated)	I	Date Received:	May	6, 2020
Chemical Analysis		Results	Specification (Class F)			
	Спенис	ai Anaiysis		(wt%)	ASTM C618-19	AASHTO M295-1
Silicon Dioxide (SiO ₂)				54.4		
Aluminum Oxide (Al ₂ O ₃)				27.2		
Iron Oxide (Fe ₂ O ₃)				6.82		
Sum of Silicon Dioxide, Iro	n Oxide & Alumin	um Oxide (SiO ₂ +Al ₂ O ₃ +Fe ₂ O ₃)		88.4	50.0 % min.	50.0 % min.
Calcium Oxide (CaO)				2.4	18.0 % max.	18.0 % max.
Magnesium Oxide (MgO)				1.1		
Sodium Oxide (Na ₂ O)				0.29		
Potassium Oxide (K ₂ O)				2.52		
"Sodium Oxide Equival	ent (Na ₂ O+0.658K	(2O)"		1.95		
Sulfur Trioxide (SO ₃)				0.09	5.0 % max.	5.0 % max.
Loss on Ignition				0.5	6.0 % max.	5.0 % max.
Moisture Content				0.1	3.0 % max.	3.0 % max.
Available Alkalies						
Sodium Oxide (Na ₂ O) as Available Alkalies			0.10			
Potassium Oxide (K ₂ O) as Available Alkalies			1.04			
Available Alkalies as "Sodium Oxide Equivalent (Na ₂ O+0.658K ₂ O)"			0.78		1.5 % max.*	
	Physical Ana	lysis	Test Date			
Fineness (Amount Retained on #325 Sieve)		5/13/20	16.1%	34 % max.	34 % max.	
Strength Activity Index (Us	ing Lehigh Leeds	Alabama Portland Cement)			•	
,	At 7 Days	:			75 % min.†	75 % min. [†]
Control Average, psi: 46	i90	Test Average, psi: 3940	5/26/20	84%	(of control)	(of control)
8.71	At 28 Day		4/4.4/4.4		75 % min. †	75 % min. †
Control Average, psi: 58		Test Average, psi: 5560	6/16/20	95%	(of control)	(of control)
Water Requirements (Test I		2,,			105% max.†	105% max.†
Control, mls: 242 Test, mls: 234		97%	(of control)	(of control)		
Autoclave Expansion:	-	16st, IIIs. 234	5/13/20	-0.04%	± 0.8 % max.	± 0.8 % max.
	Uniformity Requ	irements	Test Date			
					5 % max.	5 % max.
Specific Gravity:	fic Gravity: 2.32 Average: 2.33 5/13/20 -0.4%	from average	from average			
				1	5 % max.	5 % max.
% Retained #325 Sieve:	16.1	Average: 14.2	5/13/20	1.9%	1	from average

[†] Meeting the 7 day or 28 day strength activity index will indicate specification compliance

The results of our testing indicate that this sample complies with ASTM C618-19 and AASHTO M295-19 specifications for Class F pozzolans.

Respectfully Submitted,


SGS TEC Services

Dean Roosa

Project Manager

SGS TEC SERVICES 235 Buford Drive | Lawrenceville GA 30046 770-995-8000 | www.tecservices.com

Laboratory Principal

Bulk oxides

	Mass %
SiO ₂	36.2
Al_2O_3	21.7
Fe_2O_3	5.3
CaO	23.1
MgO	5.3
SO_3	0.6
Na₂O	3.5
K_2O	1.0
TiO ₂	0.8
P_2O_5	1.9
SrO	0.2

^{*} Optional
**Chemical Analysis performed on May 20, 2020.

Classification Steps

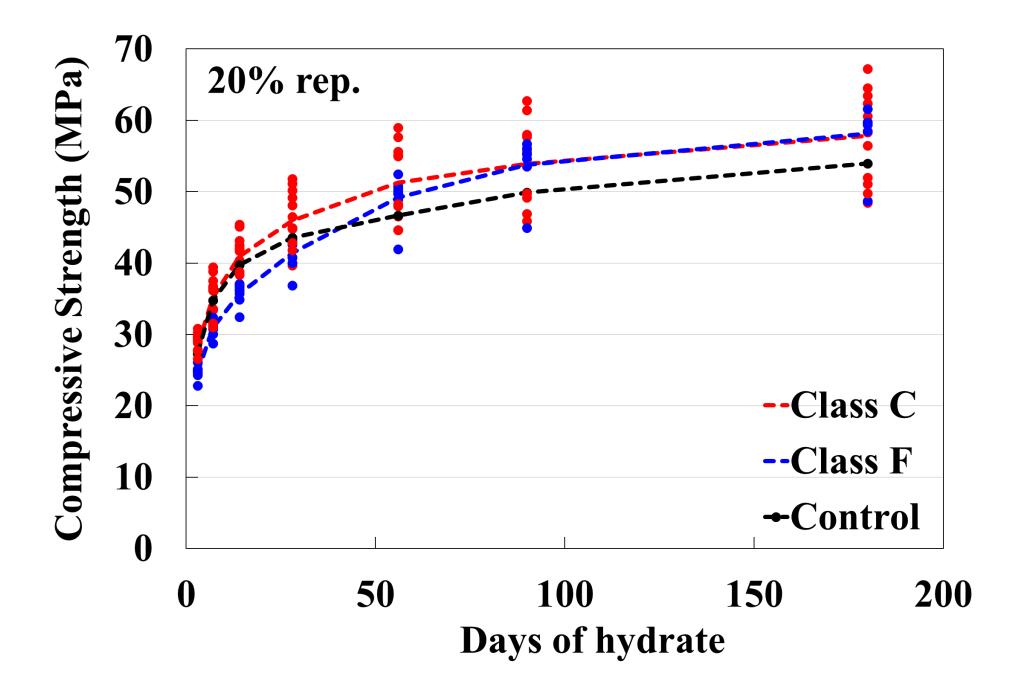
How does a concrete mixture with fly ash compare to a mixture with only portland cement?

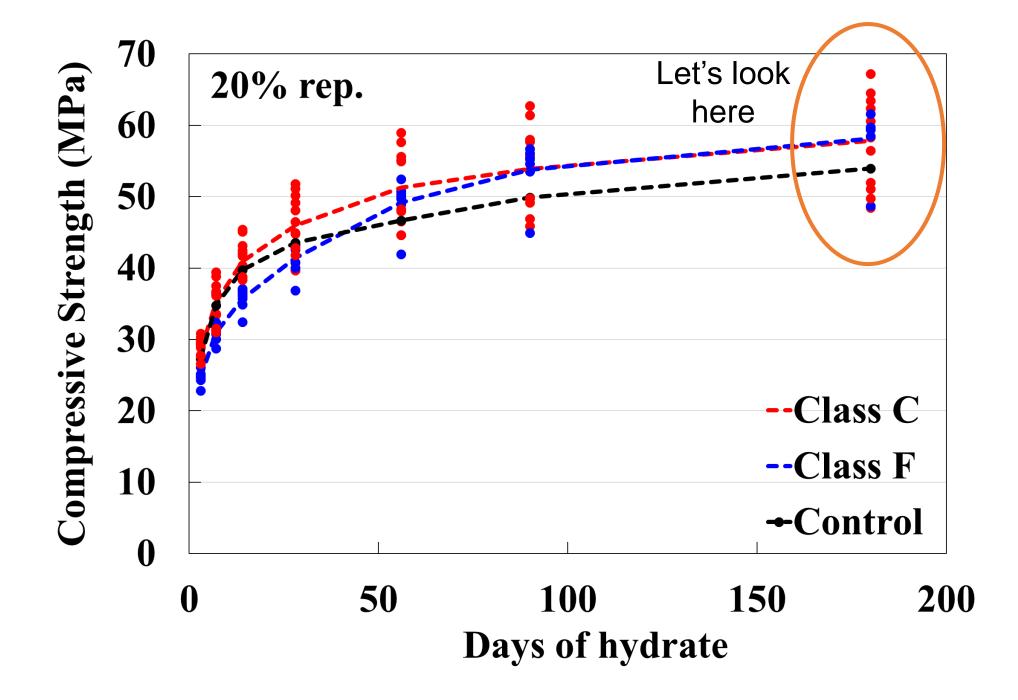
Create performance classes

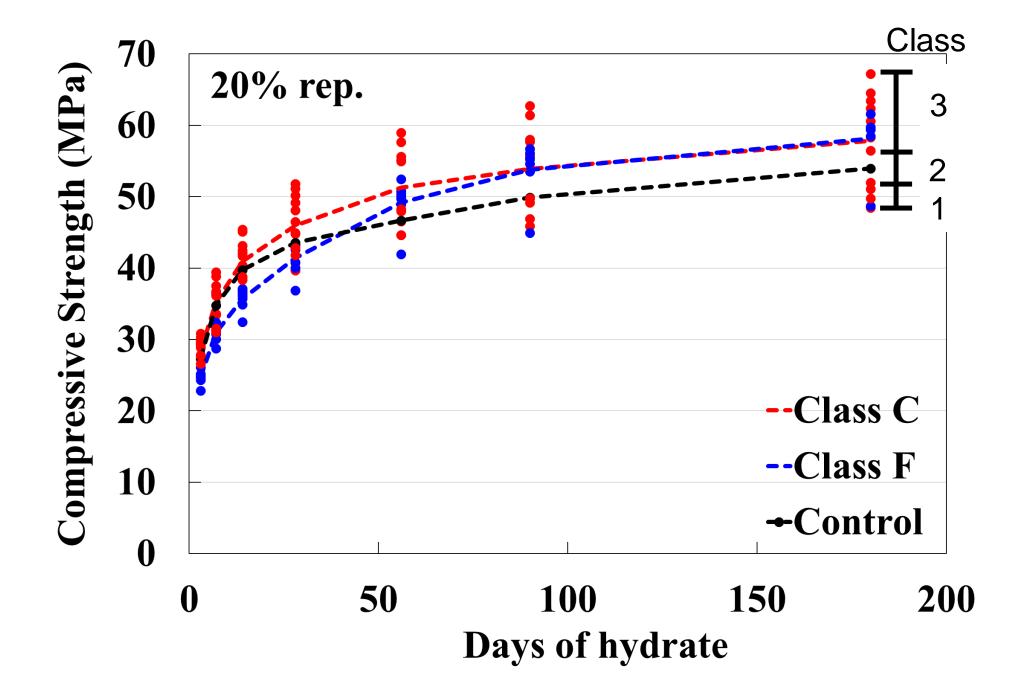
Class 1: < portland cement mean – 1 std

Class 2: = portland cement mean +/- 1 std

Class 3: > portland cement + 1 std


Classification Steps


How does a concrete mixture with fly ash compare to a mixture with only portland cement?


Create performance classes

Class 1: < OPC - 1 std
Class 2: Same as OPC +/- 1 std

Class 3: > OPC

Data

30 traditional + 14 harvested fly ashes

22 Class C

22 Class F

Tested at 20% and 40% replacement

Compare performance with a standard concrete mixture

Data

0.45 w/cm, 6.6 sacks of binder, Type I cement, one coarse and fine aggregate source.

Compression Strength 3, 7, 14, 28, 56, 90, 180d

Resistivity 3, 7, 14, 28, 56, 90, 180d

Diffusion Coefficient 35, 70, 135, 200, 500, 700d

Heat of Hydration 48h

Data

0.45 w/cm, 6.6 sacks of binder, Type I cement, one coarse and fine aggregate source.

2655 measurements

Diffusion Coefficient 35, 70, 135, 200, 500, 700d

Heat of Hydration 48h

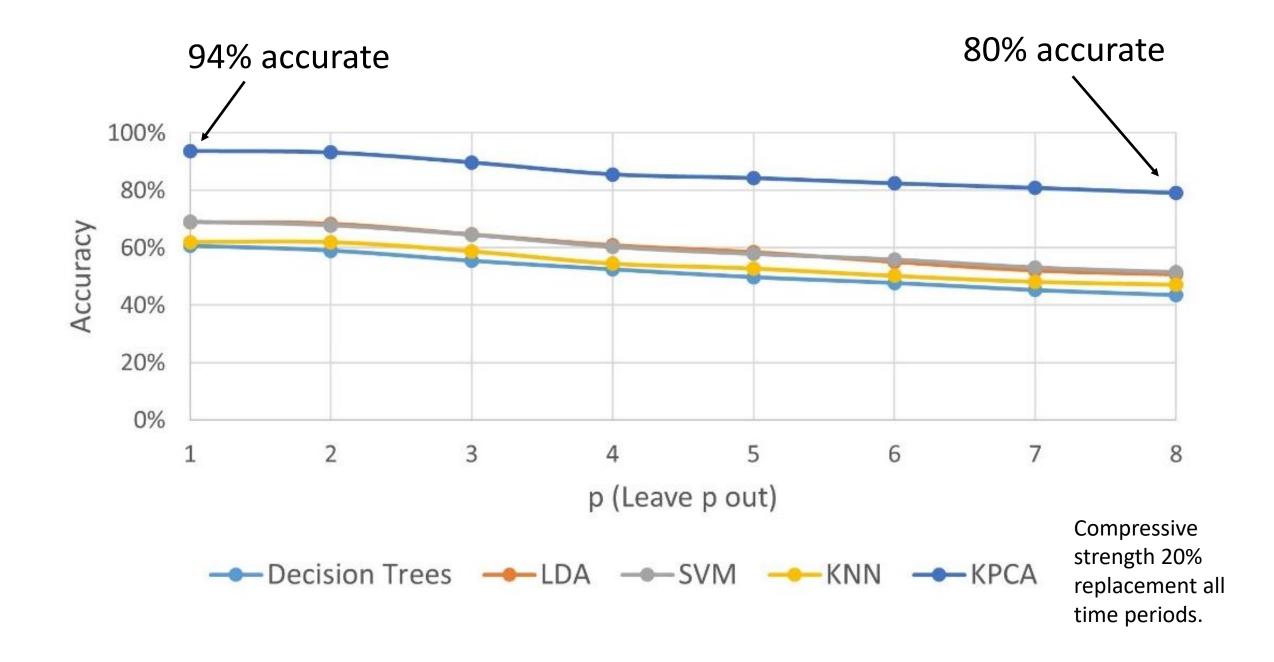
Classification Steps

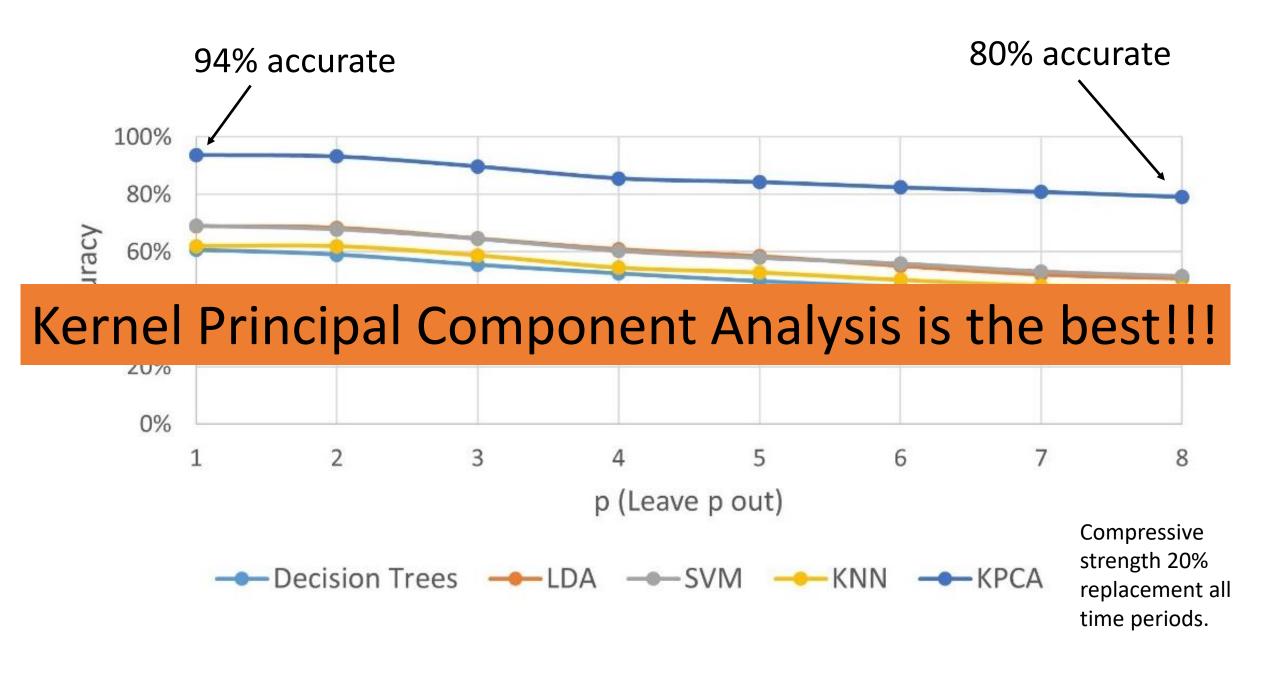
Compared 5 ML models that use all 11 bulk oxides.

Rank the models by using Leave Out X Cross Validation (LOXCV)

Leave Out X Cross Validation (LOXCV)

For x = 1


Use 43 (44-x or 44-1) observations as the training set and the remaining observation to check.


Repeat this 43 times and report the % accuracy

For x = 2

Use 42 observations as the training set and repeat this 946 times and report the % accuracy.

$$^{n}C_{r} = \frac{n!}{(n-r)! r!}$$

Class 1: < OPC

Is the mixture? Class 2: Same as OPC

Class 3: > OPC

Compressive strength

Days of hydration	20% replacement	40% replacement
3d	98%	100%
7d	93%	91%
14d	98%	91%
28d	95%	85%
56d	93%	82%
90d	91%	79%
180d	89%	81%
AVG	94%	87%
		_

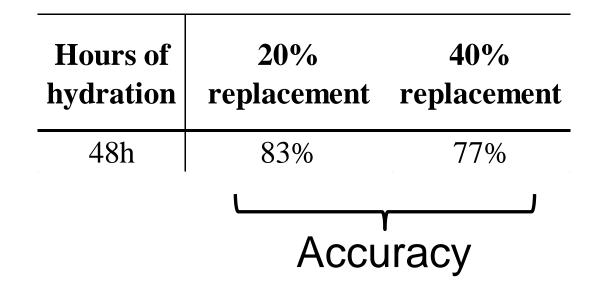
Class 1: < OPC

Is the mixture? Class 2: Same as OPC

Class 3: > OPC

Diffusion Coefficient

20% replacement	40% replacement
83%	83%
72%	76%
83%	72%
76%	76%
76%	82%
82%	76%
76%	78%
79%	78%
	83% 72% 83% 76% 76% 82% 76%


Is the mixture?

Class 1: < OPC

Class 2: Same as OPC

Class 3: > OPC

Heat of Hydration

Discussion

The Kernel PCA analysis is able to use the bulk oxides to group the performance of the fly ash and harvested fly ash for 20% and 40% replacement with 44 ashes for strength, diffusion, heat, and diffusion with about 85% (94% to 77%) accuracy.

This can be a powerful tool!!!

How can you implement?

Input bulk oxides into a simple web interface.

Website will do the calculations and tell you how it will perform compared to OPC.

Home

LEAVE COMMENTS

ABOUT

CONTACT

Fly Ash Performance Calculator

Chemical Components (by mass %)		
SiO ₂	36.2	
Al ₂ O ₃	21.7	
Fe ₂ O ₃	5.4	
CaO	23.2	
MgO	5.4	
SO ₃	.7	
Na ₂ O	3.6	
K ₂ O	1	
TiO ₂	.8	
P ₂ O ₅	1.9	
SrO	.2	
Total	100.1	

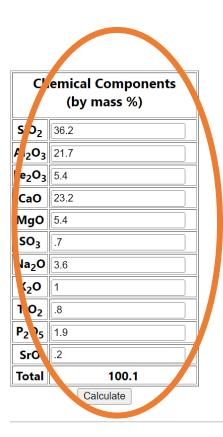
Compressi	Compressive Strength		
Fly Ash Replacement by Mass	20%	40%	
3d	Lower	Lower	
7d	Lower	Same	
14d	Lower	Higher	
28d	Same	Higher	
56d	Same	Higher	
90d	Same	Higher	
180d	Same	Higher	

Lower = lower than a mixture with just OPC Same = same as a mixture with just OPC Higher = higher than a mixture with just OPC

Diffusion Coefficient		
Fly Ash Replacement by Mass	20%	40%
45d	Higher	Lower
90d	Higher	Lower
135d	Higher	Higher
200d	Same	Same
250d	Same	Same
500d	Same	Lower
700d	Higher	Lower

Heat of Hydration at 48 h		
Fly Ash Replacement by Mass	20%	40%
	> 165 J/g	135 J/g — 165 J/g

^{© 2020-2023} Oklahoma State University, Georgia Tech, Ohio State University and Diversified Engineering for FHWA under the Exploratory Advanced Research Program, Oklahoma State University and University and University Illinois Champaign-Urbana for Illinois DOT, Oklahoma State University for National Science Foundation


Home

LEAVE COMMENTS

Авоит

CONTACT

Fly Ash Performance Calculator

Add bulk oxide content here

Compressive Strength		
Fly Ash Replacement by Mass	20%	40%
3d	Lower	Lower
7d	Lower	Same
14d	Lower	Higher
28d	Same	Higher
56d	Same	Higher
90d	Same	Higher
180d	Same	Higher

Lower = lower than a mixture with just OPC
Same = same as a mixture with just OPC
Higher = higher than a mixture with just OPC

Diffusion Coefficient		
Fly Ash Replacement by Mass	20%	40%
45d	Higher	Lower
90d	Higher	Lower
135d	Higher	Higher
200d	Same	Same
250d	Same	Same
500d	Same	Lower
700d	Higher	Lower

Heat of Hydration at 48 h		
Fly Ash Replacement by Mass	20%	40%
	> 165 J/g	135 J/g — 165 J/g

^{© 2020-2023} Oklahoma State University, Georgia Tech, Ohio State University and Diversified Engineering for FHWA under the Exploratory Advanced Research Program, Oklahoma State University and University Illinois Champaign-Urbana for Illinois DOT, Oklahoma State University for National Science Foundation

Predicted performance here

Fly Ash Performance Calculator

Chemical Components (by mass %)		
SiO ₂	36.2	
Al ₂ O ₃	21.7	
Fe ₂ O ₃	5.4	
CaO	23.2	
MgO	5.4	
SO ₃	.7	
Na ₂ O	3.6	
K ₂ O	1	
TiO ₂	.8	
P ₂ O ₅	1.9	
SrO	.2	
Total	100.1	

Compressive strength		
riy Ash Replacement by Mass	20%	40%
3d	Lower	Lower
7d	Lower	Same
14d	Lower	Higher
28d	Same	Higher
56d	Same	Higher
90d	Same	Higher
180d	Same	Higher

Lower = lower than a mixture with just OPC

Some = same as a mixture with just OPC

Higher = higher than a mixture with just OPC

Diffusion Coefficient		
Fly Ash Replacement by Mass	20%	40%
45d	Higher	Lower
90d	Higher	Lower
135d	Higher	Higher
200d	Same	Same
250d	Same	Same
500d	Same	Lower
700d	Higher	Lower

Heat of Hydration at 48 h		
Fly Ash Replacement by Mass	20%	40%
	J/g	135 J/g — 165 J/g

^{© 2020-2023} Oklahoma State University, Georgia Tech, Ohio State University and Diversified Engineering for FHWA under the Exploratory Advanced Research Program, Oklahoma State University and University and University Illinois Champaign-Urbana for Illinois DOT, Oklahoma State University for National Science Foundation

Home LEAVE COMMENTS

Авоит

Predicted performance here

Fly Ash Performance Calculator

Chemical Components (by mass %)		
SiO ₂	36.2	
Al ₂ O ₃	21.7	
Fe ₂ O ₃	5.4	
CaO	23.2	
MgO	5.4	
SO ₃	.7	
Na ₂ O	3.6	
K ₂ O	1	
TiO ₂	.8	
P ₂ O ₅	1.9	
SrO	.2	
Total	100.1	

Calculate

Compressing strength		
riy Ash Replacement by Mass	20%	40%
3d	Lower	Lower
7d	Lower	Same
14d	Lower	Higher
28d	Same	Higher
56d	Same	Higher
90d	Same	Higher
180d	Same	Higher

Lower = lower than a mixture with just OPC

Highe. = higher than a mixture with just OPC

Diffusion Coefficient		
Fly Ash Replacement by Mass	20%	40%
45d	Higher	Lower
90d	Higher	Lower
135d	Higher	Higher
200d	Same	Same
250d	Same	Same
500d	Same	Lower
700d	Higher	Lower

Heat of Hydration at 48 h		
Fly Ash Replacement 20% by Mass		40%
	J/g	135 J/g — 165 J/g

^{© 2020-2023} Oklahoma State University, Georgia Tech, Ohio State University and Diversified Engineering for FHWA under the Exploratory Advanced Research Program, Oklahoma State University and University Illinois Champaign-Urbana for Illinois DOT, Oklahoma State University for National Science Foundation

How could this be used?

Rapid screening tool to understand how a fly ash source will impact your mixture design

Investigating blends of fly ash

Investigating fly ash that does not meet current specs

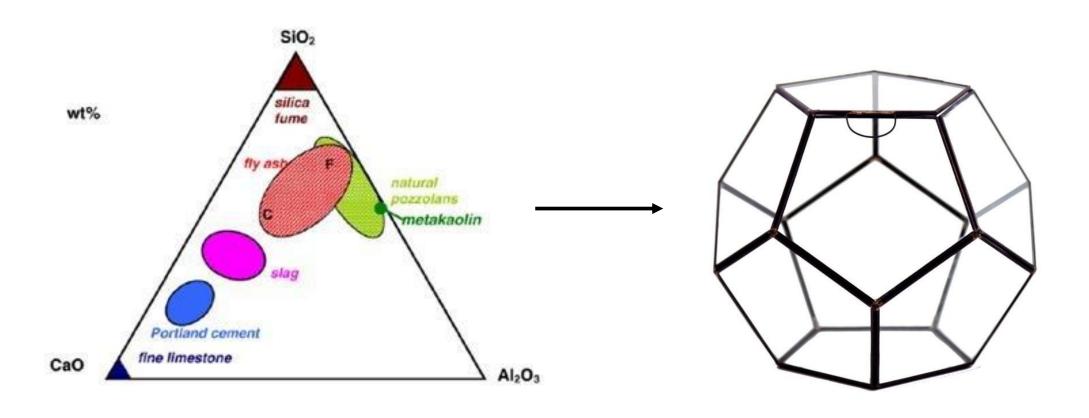
Build confidence in harvested fly ash

What would you do with this info?

This provides deeper insights besides Class C and F.

We are about to enter a new era of fly ash and we need all the help we can get.

Why does this work?


Particle size distribution is similar between these ashes

We have always known that chemical composition is important

Class C > 18% CaO

Class F < 18% CaO

Now we can take into account all the oxides.

Physics Based Model

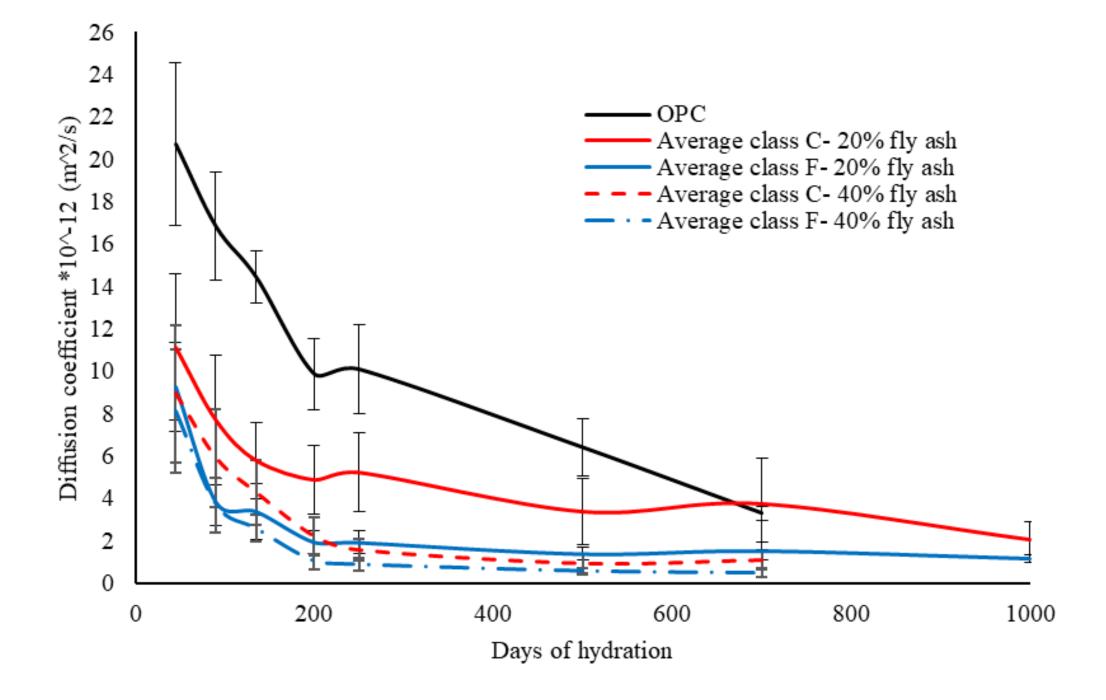
Use a Physics Based Model to predict the diffusion coefficient of paste mixtures with 20% and 40% fly ash replacement.

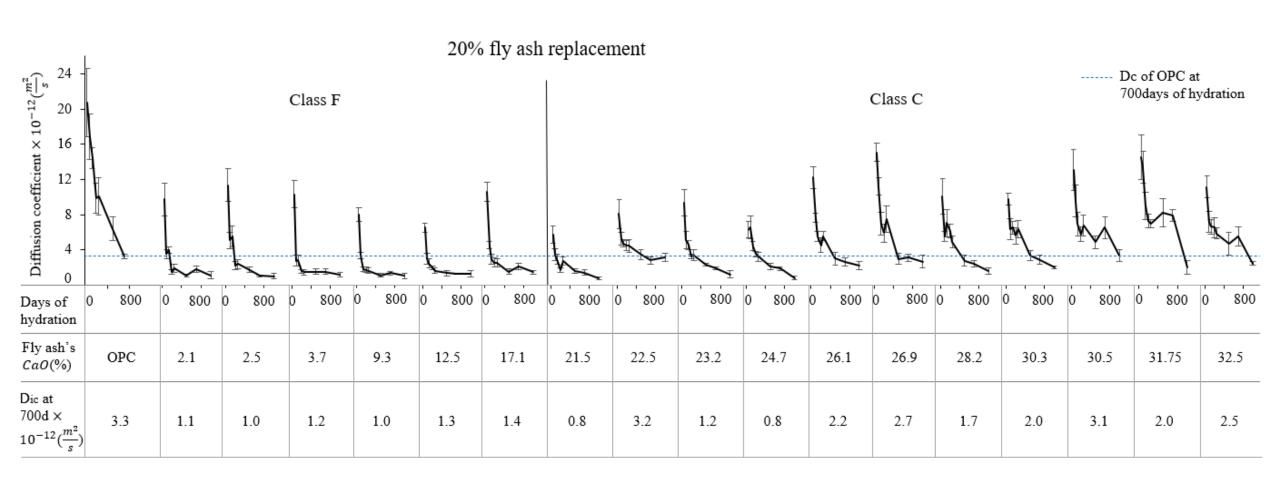
Use a model first proposed to predict pore solution alkalinity reduction from fly ash from Shehata and Thomas.

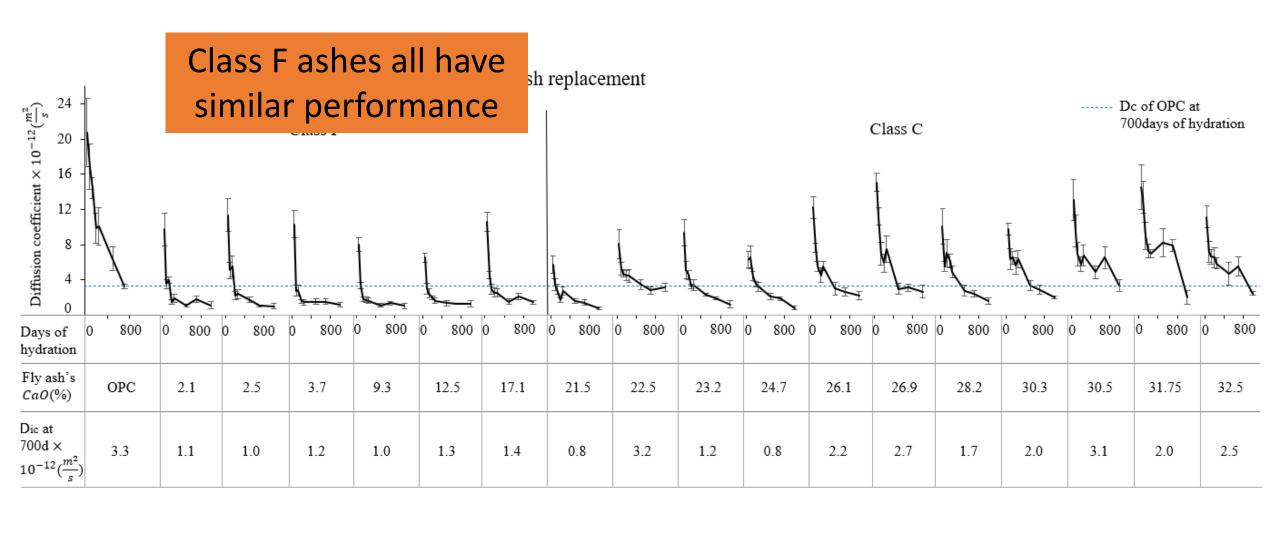
Physics Based Model

Measure the diffusion in paste samples with the following:

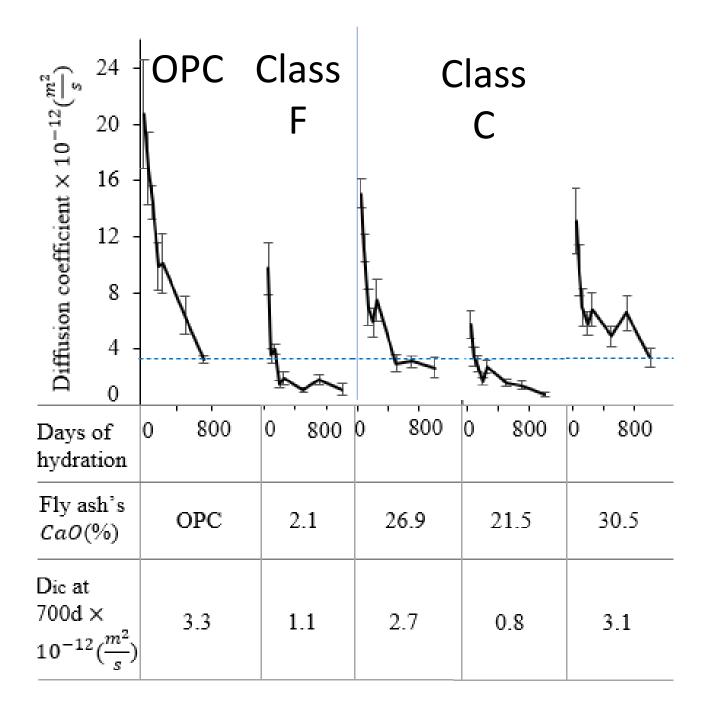
0.45 w/cm


6 class F fly ashes


11 class C fly ashes


20% and 40% replacement

Samples are stored in a sealed condition.


Test samples from 45 d to 3y.

Discussion

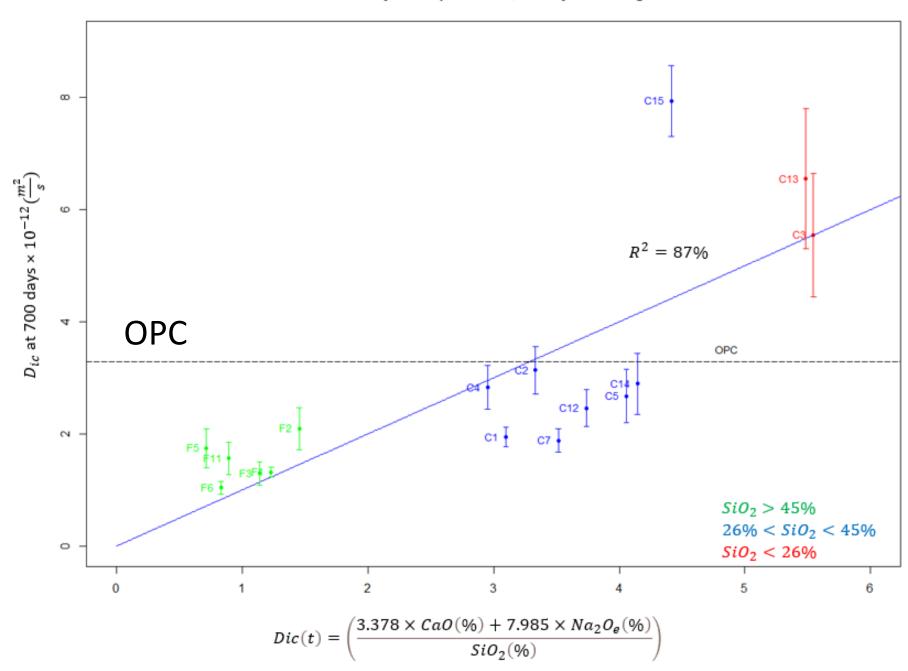
• All class F ashes have similar performance.

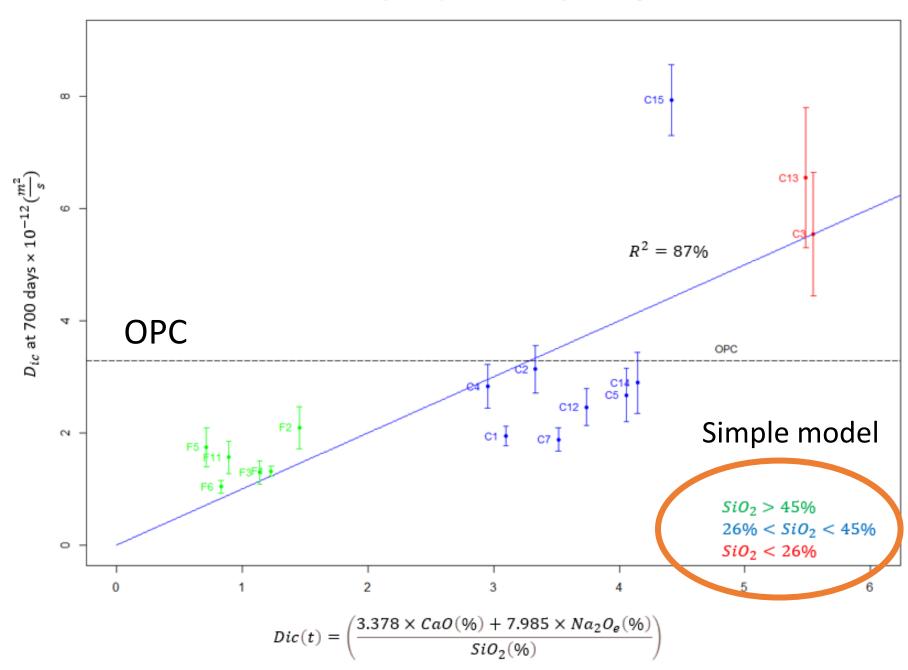
Class C ashes have variable performance.

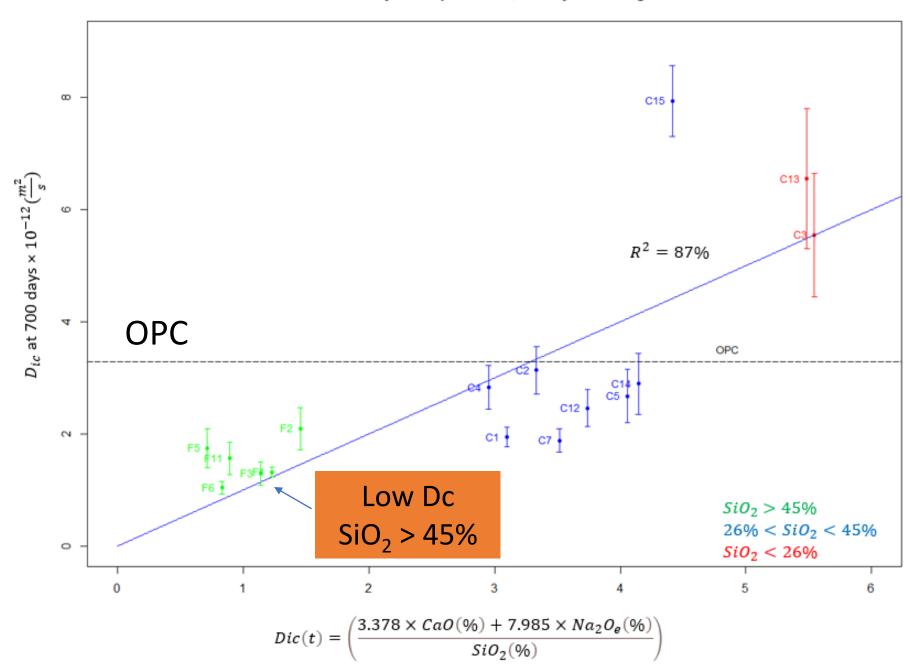
Some class C are just as good as class F and many are not

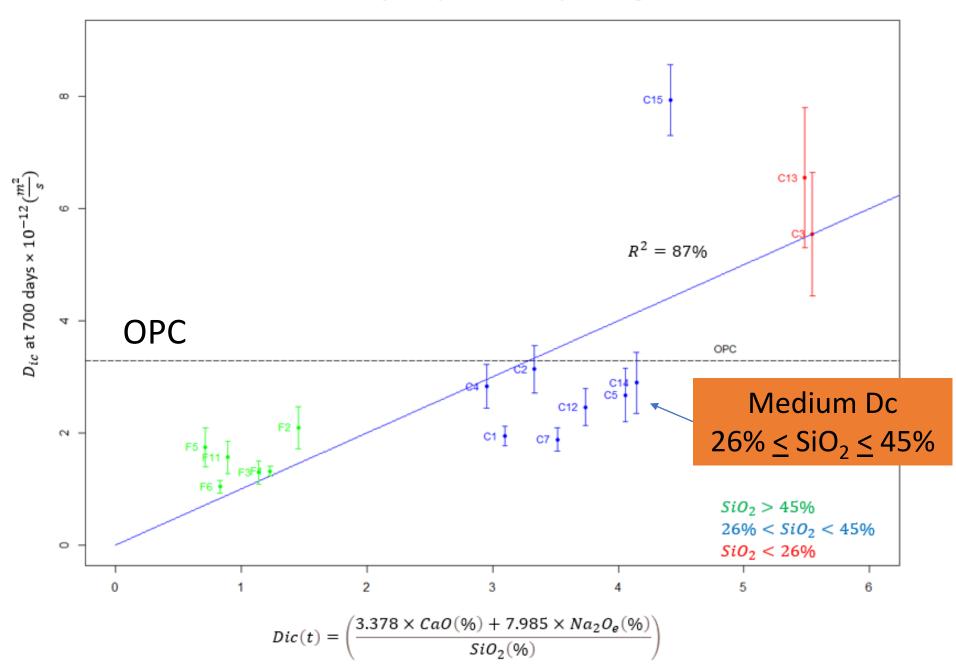
Some class C are better than OPC and some are not!

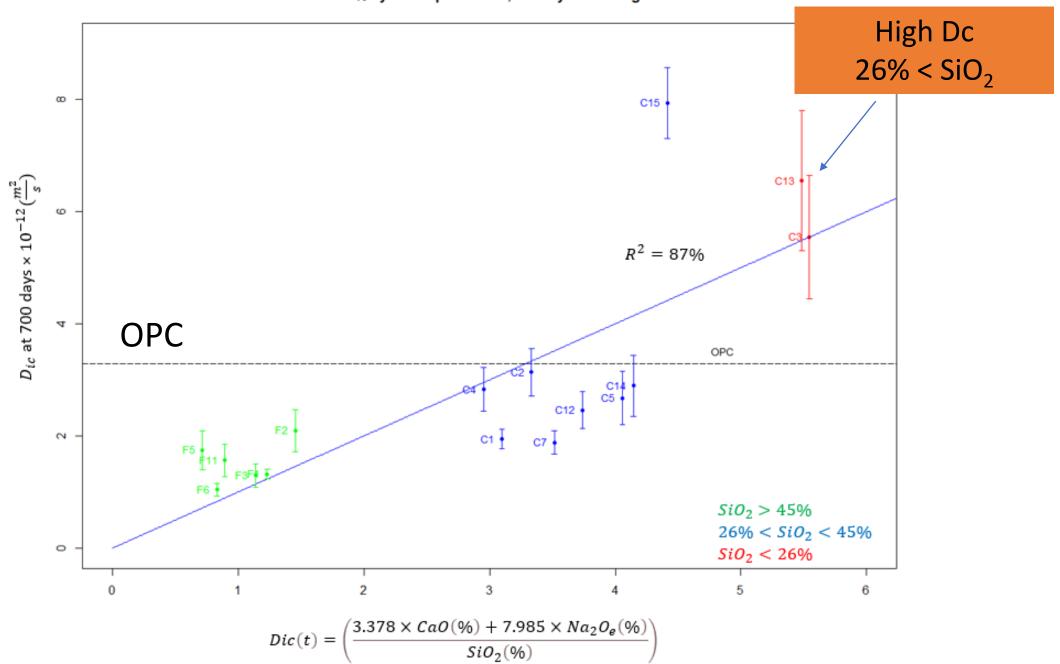
Discussion

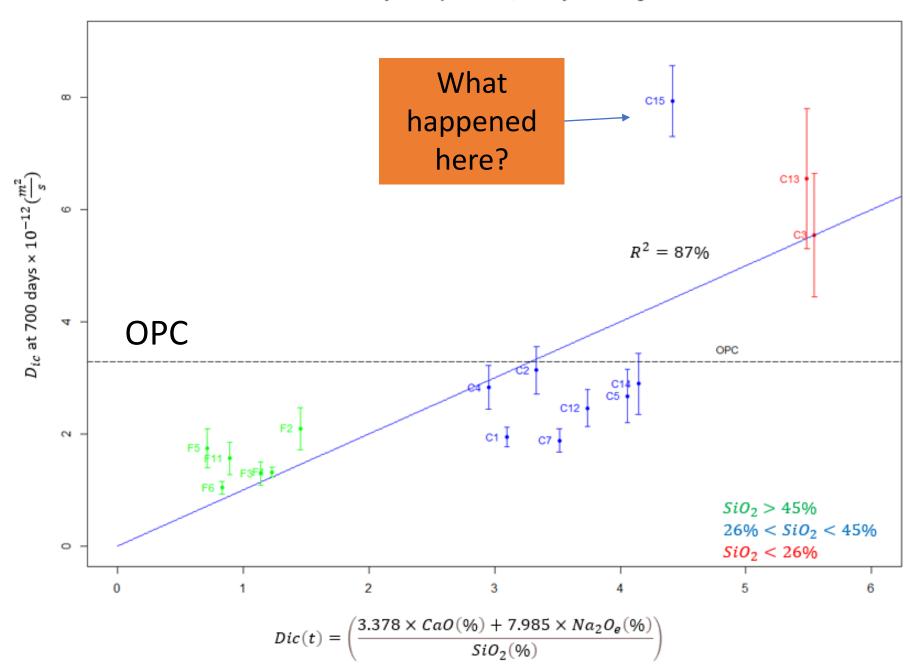

All class F ashes have similar performance.

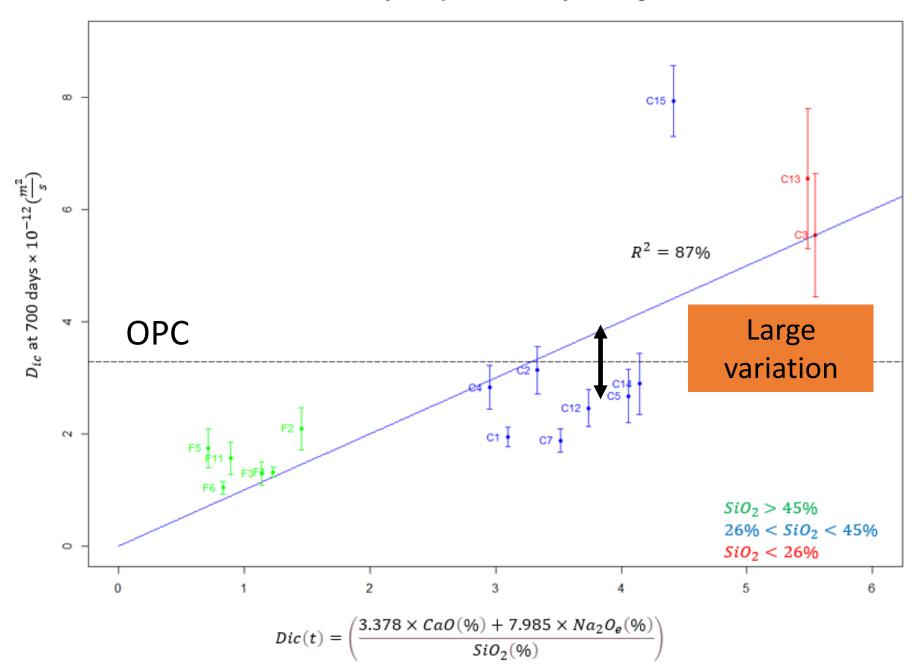

It would be great if we had a model that could predict this!


Some class C are just as good as class F and many are not


Some class C are better than OPC and some are not!


$$D_{ic}(t) = \left(\frac{A(t) \times CaO(\%) + B(t) \times Na_2O_e(\%)}{SiO_2(\%)}\right)$$





Discussion

• A Physics Based model was derived to predict the diffusion coefficient with an R^2 value of 0.87.

 A simple model based on only the SiO2 was able to predict low, medium and high performers.

 There is one outlier and the there is some variation between the predicted and measured values.

How could this be used?

You can use the amount of SiO2 to rapidly predict high, low, and medium performance of fly ash.

If you add the CaO and the alkalies then you can get better quantitative predictions.

An Observation

 AI/ML is great but it needs a lot of data and it needs to be pointed in the right direction.

 Physics Based models are powerful but they are "restricted" to the model that use.

An Observation

 When you blend Physics and AI/ML models then they can compensate for each other

As you restrain AI/ML models you need less data.

• There are lots of things that we "think" we understand that AI/ML will teach us that we are wrong.

An Important Statement

You are only as good as your data.

You must validate your models and be careful not to overstate their usefulness.

It is about constant improvement!!!

Conclusion

Computational tools are powerful and will help us develop new understanding and insights into long standing questions.

The Kernal PCA model can predict the performance level of both traditional and harvested fly ash for compressive strength, resistivity, diffusion, and heat of hydration.

Conclusion

The Physics Based model was also useful and provided accurate predictions with even less computation.

You should use whatever models are best for you with the data you have and based on what you want to learn.

www.tylerley.com/flyash

Home

LEAVE COMMENTS

ABOUT

CONTACT

Fly Ash Performance Calculator

Chemical Components (by mass %)		
SiO ₂	36.2	
Al ₂ O ₃	21.7	
Fe ₂ O ₃	5.4	
CaO	23.2	
MgO	5.4	
SO ₃	.7	
Na ₂ O	3.6	
K ₂ O	1	
TiO ₂	.8	
P ₂ O ₅	1.9	
SrO	.2	
Total	100.1	
	Calculate	

Compressi	Compressive Strength			
Fly Ash Replacement by Mass	20%	40%		
3d	Lower	Lower		
7d	Lower	Same		
14d	Lower	Higher		
28d	Same	Higher		
56d	Same	Higher		
90d	Same	Higher		
180d	Same	Higher		

Lower = lower than a mixture with just OPC Same = same as a mixture with just OPC Higher = higher than a mixture with just OPC

Diffusion Coefficient		
Fly Ash Replacement by Mass	20%	40%
45d	Higher	Lower
90d	Higher	Lower
135d	Higher	Higher
200d	Same	Same
250d	Same	Same
500d	Same	Lower
700d	Higher	Lower

Heat of Hydration at 48 h			
Fly Ash Replacement by Mass	20%	40%	
	> 165 J/g	135 J/g — 165 J/g	

^{© 2020-2023} Oklahoma State University, Georgia Tech, Ohio State University and Diversified Engineering for FHWA under the Exploratory Advanced Research Program, Oklahoma State University and University Illinois Champaign-Urbana for Illinois DOT, Oklahoma State University for National Science Foundation

www.tylerley.com/flyash www.youtube.com/tylerley tyler.ley@okstate.edu

Mixture	w/cm	Cement (lbs)	Fly Ash (lbs)	Water (lbs)	Paste (%)	Coarse (lbs)	Fine (lbs)
100% OPC	0.45	625	0	281	28.8	1903	1243
20% Fly Ash	0.45	500	125	281	28.9	1900	1240
40% Fly Ash	0.45	375	250	281	29.0	1892	1228

Is the mixture?

Class 1: < OPC

Class 2: Same as OPC

Class 3: > OPC

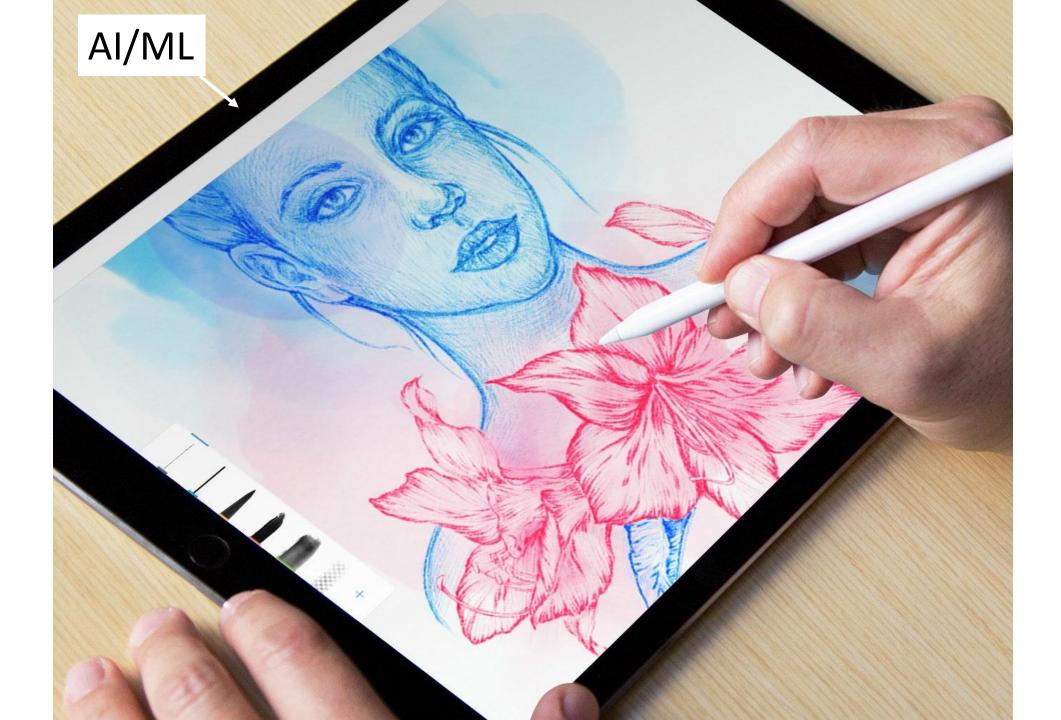
Resistivity

Days of hydration	20% replacement	40% replacement
3d	73%	79%
7d	81%	68%
14d	66%	67%
28d	69%	91%
56d	86%	79%
90d	81%	71%
180d	82%	85%
AVG	77%	77%
	` l	

What is next?

Finish ASR model for ASTM C 1567

Use 20 independent fly ashes to validate results


Investigate cements with different alkalis

A method that uses tables to do the same thing. This could be used in a guide document.



DALL-E 2

```
#generations
curl https://api.openai.com/v1/images/generations \
   -H "Content-Type: application/json" \
   -H "Authorization: Bearer $OPENAI_API_KEY" \
   -d '{
      "prompt": "a photo of a happy corgi puppy sitting and facing forward, students:
      "n":1,
      "size":"1024×1024"
    }'
```


"Photograph of llamas in front of the Eiffel tower with sunglasses during the day"

