Simplified Moment-Rotation Relationship for Plastic Hinge of Coupling Beams

Associate Prof. Hwang, Hyeon-Jong hwanghj@konkuk.ac.kr

This research was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A4A3030117).

Contents

- 1. Background
- 2. Coupling Beam Model
- 3. Comparison with Test Result
- 4. Parameter Effect Analysis
- 5. Simplified model
- 6. Summary and conclusions

1. Background

Coupling Beam Design Guidelines – ACI 318-19

- Length-to-height (l/h)
 - ▶ $l/h \ge 4$: Special moment frames Beam design
 - ▶ $l/h \le 4$: 18.10.7 Coupling beams
- Shear strength of short coupling beams
 - Essential application of diagonal bar: l/h < 2 and $V_u \ge 0.33 \sqrt{f_c'} A_{cw}$
 - Shear strength(diagonal bars contribution):
 - $V_n = 2A_{vd}f_y \sin\alpha < 0.83\sqrt{f_c'}A_{cw}$
- Transverse reinforcement
 - > s shall not exceed the least of (a) \sim (d):
 - (a) *d*/4 (b) 150 mm
 - (c) For Grade 420, $6d_b$ (d) For Grade 550, $5d_b$

1. Background

Coupling Beam Design Guidelines – ASCE/SEI 41-17

Modeling criteria

- Both bending and shear deformations shall be used
- Diagonal reinforcement beam (ACI 318) : flexure only

THE WORLD'S GATHERING PLACE FOR ADVAN

- Shear strength of short coupling beams
 - > Shear strength : $V_n = 2A_{vd}f_y \sin \alpha$ (ACI 318)
 - Modeling parameters

a) Controlled by Flexure			
Condition		Modeling parameters	
Details	$\frac{V}{t_w l_w \sqrt{f_{cE}'}}$	Plastic Hinge Rotation (rad.)	
		а	b
Seismic detail section	≤ 3	0.025	0.050
	≥ 6	0.020	0.040
Non-seismic detail section	≤ 3	0.020	0.035
	≥ 6	0.010	0.025
Diagonal reinforcement	NA	0.030	0.050
b) Controlled by Shear			

Chord rotation for coupling beams

-	Conditic	n Modeling p		arameters	
	Details	$\frac{V}{L + \frac{V}{F}}$	Plastic Hinge Rotation (rad.)		
		$t_w l_w \sqrt{f_{cE}}$	d	е	
	Seismic detail	≤ 3	0.02	0.030	
	section	≥ 6	0.016	0.024	NICOST
CI	Non-seismic	≤ 3	0.012	0.025	
deta	detail section	≥ 6	0.008	0.014	ENTION

1. Background

Existing Research

Problem

- > Inelastic deformations increase \rightarrow shear strength decrease
- > Existing studies: shear strength degradation is not clearly defined
- Unified model addressing various parameter is required

Development goals

- Shear strength degradation of coupling beams
- Moment-rotation relationship for plastic hinge
- Nonlinear behavior model for coupling beams w/wo diagonal

Plastic Hinge Model

Elastic Beam + Plastic Hinge

Short coupling beam

Plastic Hinge Model

- **Elastic Beam + Plastic Hinge**
 - Effective stiffness*:

$$E_{c}I_{b} = \frac{0.3}{1+20(h/l)^{3}}E_{c}I_{g}$$

- E_c = Elastic modulus of concrete(= $4700\sqrt{f_c'}$)
- $I_{\rm g}$ = second-order moment of inertia of the gross cross section in the coupling beam

h =coupling beam height

l = coupling beam length

* Eom, T.S. et al. "Nonlinear Modeling Parameters of Reinforced Concrete Coupling Beams,"

Plastic Hinge Model

- Elastic Beam + Plastic Hinge
 - In moment-rotation relationship
 - a = inelastic deformation prior to a sudden strength degradation
 - **b** = ultimate deformation at failure
 - *c* = residual strength
 - Moment-rotation relationship of rotational spring element:

Defined by shear strength degradation after flexural yielding

Shear Resistance Mechanisms of Short Coupling Beam

V. M

A_df_{vd}

Plastic rotation angle

Load – plastic rotation angle relationship

Strut mechanism(V_c) + Truss mechanism(V_{τ}) + Diagonal bar resistance(V_{D})

Constant shear contribution regardless of deformation

Strut mechanism(V_c) : \succ

As deformation increases, the shear contribution decreases due to the diagonal cracks

Shear Resistance Mechanisms of Short Coupling Beam

Compression zone depth

 $c_b = \frac{A_s f_y + A_d f_{yd} \cos \theta_d}{0.85 f'_c b} \qquad (A_d f_{yd} \cos \theta_d: \text{ contribution of diagonal tension bars to } c_b)$

Maximum width of CCT node

$$w_{t} = \frac{A_{t}f_{yt}}{0.8(0.85f_{c}')b} \le 2s_{t}$$

Width & angle of diagonal strut

$$w = c_b \cos \theta_s + w_t \sin \theta_s$$
 $\theta_s = \operatorname{atan}\left(\frac{h - c_b}{l - w_t}\right)$

 θ_s : determined from the geometric property and crack angle based on existing test result

Effective concrete compressive strength (MCFT)

$$f_{ce} \approx \frac{f_c'}{0.8 + 170 \left[\frac{\gamma}{2} \tan \theta_s + \varepsilon_{yt}\right]} \leq f_c'$$

γ: inelastic shear distortion of the coupling beam

(As the shear deformations increases, f_{ce} decreases)

Shear resistance of diagonal strut

$$V_C = f_{ce}(b_w)\sin\theta$$

Truss mechanism resistance V_{τ}

Shear Resistance Mechanisms of Short Coupling Beam

Compression field $V_T / \sin \theta_s$ A_f ← C . $A_w f_{yw}$ → A f $C \rightarrow C$ $F_b(I_c/I)$ S S

Shear strength by longitudinal bars

$V_{T1} = \left(A_s f_y + \alpha_c A_w f_{yw}\right) \tan \theta_t$

- α_c : factor related to cut-off bars
- (=0.6 for cut-off distributed longitudinal web bars)
- Crack angle in compression stress field
 - $\theta_t = \max[\theta_s, 26.5^\circ]$

 θ_s : diagonal strut angle 26.5: $\cot \theta_t = 2.0$, according to bearing pressure(or compressive stress) distribution in the compression field

> Shear strength by transverse bars

$$V_{T2} = A_t f_{yt} n_t = A_t f_{yt} \frac{d}{s \cdot \tan \theta_t}$$

- Distributed bond stress of longitudinal bars
 - + tensile force of transverse reinforcement
- = inclined compression stress field

Shear Resistance Mechanisms of Short Coupling Beam

• Truss mechanism resistance V_{τ}

Local failure of concrete

 $V_{T3} = 0.35 f_{ce0} \left(b w_f \right) \sin \theta_t$

$$f_{ce0} \approx \frac{f_c'}{0.8 + 170\varepsilon_{yt}} \ge 0.85 \times 0.75 f_c'$$

Strength reduction factor of 0.35 due to Bi-directional tension of concrete + Diagonal cracks of opposite strut

ICRETE

Strut strength of ACI 318-19

Local diagonal strut width

 $w_f = (d - c_b) \cos \theta_t$

d: Beam effective depth

> Shear strength of truss mechanism

 $V_T = \min[V_{T1}, V_{T2}, V_{T3}]$

Shear Resistance Mechanisms of Short Coupling Beam

Diagonal bar resistance V_D

- Cyclic loading
 - ightarrow Large tensile plastic deformation of diagonal bars
 - \rightarrow Residual tensile strain
 - \rightarrow Early development of the compressive stress
 - \rightarrow Contribution to tension and compression
 - \rightarrow Shear resistance of the diagonal bars
- Shear resistance of diagonal bars

 $V_D = 2A_d f_{yd} \sin \theta_d$

Diagonal bars resist the shear force directly

→ When high-strength rebar (or cable) is applied, concrete damage may occur before diagonal bar yielding: upper limit of f_{vd} should be considered

d be considered CONCRETE CONVENTION

Deformation Capacity of Coupling Beam

• Shear capacity(V_n) of a coupling beam

Shear capacity

 $\boldsymbol{V}_n = \boldsymbol{V}_C + \boldsymbol{V}_T + \boldsymbol{V}_D$

- Shear distortion increase
 - \rightarrow V_c decreases & V_T and V_p are maintained
- Moment-rotation relationship of rotational spring element

Rotational spring elements at the interface between

beam and wall

- **EY** $(0, M_n)$: Yielding point
 - **EU** (θ_u , M_n): Ultimate point
 - **ER** (θ_r , 0.2 M_n): Residual point

EF (θ_f , 0.2 M_n): Failure point

Moment-Rotation Relationship of Plastic Hinge Model

Proposed model

EY $(0, M_n)$ – Yielding Point

$$M_n = \left(A_s f_y + A_d f_{yd} \cos \theta_d\right) \left(d - \frac{c_b}{2}\right)$$

- ▶ EU (θ_u, M_n) Ultimate Point
- Intersection point between the shear capacity and shear demand $V_{f} = \frac{2M_{n}}{l} = \frac{2\left(A_{s}f_{y} + A_{d}f_{yd}\cos\theta_{d}\right)\left(d - \frac{c_{b}}{2}\right)}{l}$ $\theta_{u} = \gamma_{u} = \frac{1}{85\tan\theta_{s}}\left[\frac{f_{c}'(bw)\sin\theta_{s}}{V_{f} - V_{T} - V_{D}} - 0.8 - 170\varepsilon_{yt}\right]$

- Compression zone failure
- For conventional reinforcement θ_u = 0.03, for distributed reinforcement θ_u = 0.035, for diagonal reinforcement θ_u = 0.045
- **ER** $(\theta_r, 0.2M_n)$, EF $(\theta_f, 0.2M_n)$ Residual & Failure Points
- A linear strength degradation between EU and ER, on the basis of the strength degradation of existing test

 $\theta_r = \theta_u + 0.01 \text{ rad.}$ $\theta_f = \theta_u + 0.03 \text{ rad.}$

3. Comparison with Test Result

Conventional Reinforcement

- Predictions agreed well with the test results
- (a) & (b): V_{τ}/V_{f} was relatively high -> deformation capacity was greater than 3.8%

Test result

Proposed method

3. Comparison with Test Result

Distributed Reinforcement

- For l/h = 1.0, existing method underestimated δ_y
- ASCE/SEI 41-17 underestimated the deformation capacity

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Test result

Proposed method

3. Comparison with Test Result

Diagonal Reinforcement

Test result

Proposed method

- Predictions agreed with the test
- ◆ ASCE/SEI 41-17 underestimated the deformation capacity

4. Parameter Effect Analysis

Effects of design parameters

- Transverse reinforcement
 - Shear strength increases as transvers reinforcement increases
- Distributed bars
 - > Shear strength increases as distributed bar ratio increases
 - Distributed bars do not increase shear demand

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Design recommendation for the plastic hinge rotation of a = 0.03 rad.

$f_c' = 30 \text{ MPa}$						
Shear	Max. rebar	Distributed	Min.			
span	ratio	/tension bar	transverse bar			
(l/h)	(A_{s}/bd)	$(\alpha_{\rm c}A_{\rm w}f_{\rm yw}/A_{\rm s}f_{\rm y})$	ratio(A,/bs)			
> 3.0	$4.0/f_{y}$	> 0%	1.0/ f _{ut}			
2.5	$4.0/f_{y}$	> 5%	1.1/ <i>f</i> _{yt}			
2.0	3.9/ <i>f</i> _y	≥ 38%	$1.4/f_{yt}$			
1.5	2.9/f _y	≥ 65%	1.8/ f _{ut}			
1.0	$2.4/f_y$	≳ 70%	3.7/f _{yt}			

$f_c' = 60 \text{ MPa}$					
Shear	Max. rebar	Distributed	Min.		
span	ratio	<u>/tension</u> bar	transverse bar		
(l/h)	(A_{o}/bd)	$(\alpha_{\rm c}A_{\rm w}f_{\rm yw}/A_{\rm s}f_{\rm y})$	$ratio(A_t/bs)$		
≥ 3.0	$5.4/f_{y}$	<u>> 0%</u>	1.4/fy		
2.5	5.3/f _y	> 9%	1.5/ <i>f</i> _y		
2.0	$5.2/f_{y}$	<u>></u> 42%	1.9/ <i>f</i> _y		
1.5	3.8/f _y	> 65%	2.5/f _y		
1.0	$3.3/f_y$	≳ 70%	5.2/f _y		

5. Simplified model

Simplification

Shear strength model in ACI 318-19

\geq $V_n = V_c + V_s + V_d$

- $V_c = \sqrt{f_c'}/6 \ (bd)$ \succ
- $V_s = A_t f_{yt} d/s \leq 4 V_c$ \geq
- $V_d = 2A_d f_{vd} \sin \theta_d$ \triangleright

Mean value = 0.84

\rightarrow Close to 1 sigma range of reliability (overestimation ratio = 16%)

Rebar details		Plastic rotation a (rad)		
Conventional rebars	Seismic detail	$0.02(V_n/V_u)$ - $\theta_y \leq 0.035$ - θ_y	.0 ס ס	
$V_u \leq V_n$	Non-seismic detail	$0.016(V_{r}/V_{u}) - \theta_{y} \leq 0.025 - \theta_{y}$	(L) 0.00	
Distributed rebars $V_u \leq V_n$	Seismic detail	$0.025(V_{r}/V_{u}) - \theta_{y} \leq 0.05 - \theta_{y}$] 1 Inse 0.04	
	Non-seismic detail	$0.016(V_{\eta}/V_{u}) - \theta_{y} \leq 0.035 - \theta_{y}$	est re	
Diagonal rebars	All cases	$0.03(V_{\rm r}/V_{\rm u}) - \theta_{\rm y} \leq 0.055 - \theta_{\rm y}$		
Conventional & Distributed $V_u > V_n$	All cases	0.01 - θ _y	0.0 [ts 0.0	

0

A_s/bd

0.01

 \sim

0.02

A,/bs

0.03

- 1. For the nonlinear numerical analysis of short coupling beams, a plastic hinge model was developed
- 2. Shear strength of coupling beam was defined as $V_n = V_C + V_T + V_D$
- 3. A rotational spring element was used to describe inelastic deformation
- 4. To describe the shear strength degradation, moment-chord rotation relationship of the rotational spring element was developed
- 5. Distributed bars and transverse reinforcement can increase shear strength without increasing shear demand
- 6. Simplified method based on shear strength of ACI 318-19 was proposed

Thank you for your attention!

Hyeon-Jong Hwang, Ph.D. Email: hwanghj@konkuk.ac.kr / hwanggun85@naver.com Homepage: https://sites.google.com/view/dr-hwang

