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MISSOURI

S&T Concrete: Overview

CONCRETE MIX DESIGN \

e Concrete: The principal material for 4
construction of (nearly all) infrastructure

(SAND ) o—u

* CEMENT

e Concrete = Portland cement + water + sand
+ stones + chemicals (to regulate properties)

e Production-and-use: 40 billion tons/year
— Employs 10 million Americans

— Creates $1.3 trillion worth of engineered
COARSE AGGREGATE WATER

SyStemS ( BLUE METAL )

. . E THE WORLD’S NEXT
e 2050 projections - MEGACITIES

Curtt.there are 32 megacties in the word 1o.sirg ~545M, © 2M2POPULATON O 20308 POPLLATION k
e

— Global population: 10 billion
— (Sub)urbanites: 6.6 billion

— Rise of >50 megacities

— Concrete production: ~60 billion tons/year \_
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S&T Concrete: The ugly

e The carbon-footprint problem / A )

Rotating Kiln

e Limestone (CaCO,) is needed to

produce cement: 70%,,,...

— CO, released at ~800 °C

CO,
e Clinkering temperature: 1450°C t
— Achieved using fossil fuels
5 5
— Switching to electricity doesn’t help § § E
(68% of electricity is generated from  £|Z
fossil fuels) 2

e 0.85 tons of CO, emitted for every ton
of cement produced

e Cement production: 8% of all LN S /O S L S QO .
anthropogenic CO, emissions . Lo i )
. . o 1 coal
e |PCC: “Essential field of action” k . /
2010 2020 2030 2040 2050 cia

. g
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S&T Using supplementary cementitious materials

e Use supplementary cementitious
materials (SCMs) to partially
replace cement in concrete

— Coal fly ash; slags; waste glass

— Geological materials (e.g., clay)

e SCMs are not as reactive as
cement: Cannot replace >50%

e Feature substantial batch-to-batch
variations in composition

o Affect chemical reactions (cement
hydration); microstructural
evolution; property development
in unpredictable ways.

\

Compressive Strength (MPa)

.
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Lapeyre et al., Sci. Reports 2021
Cook et al. Mat. & Des. 2021
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Cement Hydration: Plain Paste

e Cement reacts with water to form

products: “hydration”

Isothermal calorimetry is typically
used to monitor hydration kinetics

— Heat evolution linked to
rate/extent of cement hydration

Anhydrous phases dissolve;
products (C-S-H) nucleate and grow;
microstructure evolves; and
properties develop

Different phases; disparate kinetics;
disparate mechanisms

Modeling challenges:

— Account for hydration mechanisms
of all anhydrous phases

T. Han
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Cement Hydration: Binary Paste
Sl y y

e SCMs: fillers (limestone and quartz) / \

e |n general, filler addition increases
reaction rates

e Extent of acceleration is strongly
dependent on:

— Filler fineness (surface area)

— Cement replacement (%)

e Limestone superior than quartz at

i O
equivalent surface area Quartz

[ Limestone |

00— T T T T T T

1 2 3 4 5 6 7 8
Area Multiplier (AM)

Slope of Acceleration (mW/g_,s.h)

Modeling challenges:

— Not all fillers are the same

' _ Area Multiplier: Factor increase in surface area
— Acceleration does NOT linearly

increase with surface area

Qey et al.; Kumar et al. J. Am. Ceram. Soc. 2013; 201 y
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Cement Hydration: Binary Paste

Sl

e SCMis: silica or aluminosilicates

¢ Silica fume and metakaolin — at least
in the first 24 h — accelerate cement
hydration kinetics

— Later on, they may react with
calcium hydroxide; alter hydration

e Fly ash —a highly heterogeneous
material — alters hydration kinetics
in myriad ways

e Modeling challenges:

— Changes in hydration kinetics
strongly dependent on PSD and
chemistry of the SCM

— Multiple mechanisms (filler
effect; pozzolanic reaction; etc.)

at play at any given time
T. Han

-
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Cement Hydration: Ternary Paste

Sal

e |nteractions between SCMs and
paste components are complex

— Filler effect; pozzolanic effect;
secondary reactions; etc.

e E.g., Cement-limestone-metakaolin
reaction to form hemi- and mon—
carboaluminate

e E.g., SO,/AL O, of the binder could
be altered, thereby affecting
hydration of the C;A phase

e Modeling challenges:

— Multiple concurrent reaction
mechanisms need to be
considered to model the overall
progression of reaction

T. Han

Heat Flow Rate [MW. g.."]

\_

|

Metakaolin + Limestone
Replacements -

0% Metakaolin; 0% Limestone
— 0% Metakaolin; 60% Limestone
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Han et al. (Unpublished)
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Why model hydration kinetics?
S y y

e Apriori prediction of hydration kinetics / \
(calorimetry profile) is very useful 70 Strength ve. Camulative Heat ' | '
wloocementmpeny T I
e |f we know what % of cement has | o coment:Typem T ]
; 2=, © /’/ """ ,/'// N
reacted, thermodynamic models i RICE b T

can predict phase assemblage

Compressive Strength (MPa)

e More heat = greater extent of 7 , I
. Q
cement hydration = more products 0 —= - S —
0 300 ] 600 ) 900 1200
= |less porosity; more solid-to-solid Gumulative Heat () Guuer’)
phase connectivity; more strength 10000 -
Intial setting time
. . . . 700 7 4 Final setting time 4 A‘ 1000 - ° B -
e Cumulative heat is linked to properties ERC R e w207
) E 500 - R2=0.79 g
— strength; set time; rheology; etc. | £ | S LT
n A ';:)
. . 300 4 T =4.85¢ - 11
e |f hydration can be predicted, 0 eom
. 200 T T T 1 0.1 T T T 1
performance can be estimated ey 0G0 00000 1200
Time of termination of the induction period(min) Time of peak heat (min)
o UserI for Cement dESign, miXtU re \ Kumar et al. Cem. Conc. Compos. 2013 /
. . Meng et al. Cem. Conc. Compos. 2019
proportioning, etc.

T. Han ACI Convention, Boston, MA Oct 29th, 2023 Slide 9



MISSOURI

S&T Nucleation-and-Growth Mechanism

e Classical phase boundary (heterogenous) 4 N
nucleation-and-growth models

— substrate: cement and/or SCM surfaces

— A single product with constant density
forms heterogeneously at nucleation event

— Product grows (usually in isotropic fashion)
at constant rate

e |Inputs

— cement, SCM, water contents; SSA of solids

— cement/SCM chemistry not considered

e Parameters need to be optimized using " Cement
calorimetry profiles B scm

I C-S-H (single product)

— Nucleation density; growth rate;

morphology of the product; etc.
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Sal

* Modified phase boundary
nucleation-and-growth models

— Product morphology is acicular

— Product does not grow freely
into capillary pore space

— Density of product not constant

— Product growth rate varies with
time (or supersaturation)

e Excellent fits can be obtained

e But, calorimetry profiles still
needed to optimize parameters

T. Han

Nucleation-and-Growth Mechanism

/ 0.05 +—r—1

L 1, 1 \

Rate of Reaction, da/dt (h)

OPC + 30% SF
0.6% PCE

Measured
N---G,,=0.055 um. h"' |~
% - Variable G,

\ Chem. C 2016

Meng et al. J. Phys.
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Sé‘r Supervised machine learning

e Machine learning (ML) is a form of artificial 4 Predict properties of mew systems )
intelligence: unsupervised and supervised P
%BG-. © RMSE = 4.51 MPa @', .-
* Supervised ML model is first trained using a ie]l s |
database ol
e The ML model develops patterns, input-output S S w s e e

Measured Compressive Strength (Mpa)

correlations in the data
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Il

— Correlations may or may not be known from theory

Heat Flow Rate [mW. g "]
w
1

e Once trained, the ML model can leverage input-
output correlations to predict in new data-
domains

o

Optimize mixture design of systems

* In the case of cement pastes/concretes R

0.54

o)
OoOooooO

— Training: ML model learns correlations between inputs
(physiochemical properties of precursors) and output
(heat evolution; elastic modulus; strength; etc.)

e
o
2

Optimum w/cm (Unitless)
o
'S
©

I
»
a

— Testing: Predicts properties (heat evolution) of new xS
pastes/concretes, using their mix design as input K j
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Sé‘r Database used for machine learning

* Training: hundreds of unique pastes  /~ |nput: PSDs, composition, and contents

— Plain, binary, and ternary pastes of cement and SCMs: & water content

Cement: Commercial and synthetic e BEMEHT;II_H e

SCMs .".‘ﬁ e R |

— Different types: limestone; quartz;
calcined clay; silica fume; fly ash; etc.

— 0-t0-60%,,,,.. cement replacement

e Inputs: Physiochemical properties
(composition, PSD) of pastesatt=0h

o yoTates
1 "

Hydrate's Outward Growth Rate |
—PC + 18%SF

‘T_g_ﬁ- == PC + 35%LS + 23%MK =
Outputs: growth rate of hydrates pBNG I\'i del Outyjut: Heat
e Blind-testing: Pastes, with new PSDs Simulagig Flgw Rate

and replacement levels of SCMs;
different cement compositions

0-0 ' v ' v ' v
0 6 12 18 24
Time (hour)
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S&‘ Advanced Nucleation-and-Growth Model

a(t) = B - X(t) Degree of hydration obtained (oot -\

Plain PC

«=» Heat Flow Rate
e pBNG Simulation [

from calorimetry profiles
o X(t) =1—exp (‘27”0 1Gout(t) tagy - t-

Fp(Gou : ‘9ldensity:
(1 _ o (Gout® g Taensity t)) Calculate the
Gout(t) '\/71"9°Idensity't

growth rate of hydrates using Cahn’s euqation

Heat Flow Rate (mW.g_, ")

0 6 12 18 24

o SSApinder = SSAZcement + , Time (hour)
SA scmil a SSA scm?2 25 ] 1 ] 2 ] 2 |
Ascm15SAsem1 100—Zsem1 T Gscmi SCM2 100—24em2 PC +20%LS + 25%MK |
=~ 20 e Heat FIo_w Ratt:-z i
e Effective surface area (a,.,) is used to J = PBNG Simulation
account for pozzolanic reaction, sulfate effect, :
Al(OH)", amalgamation and filler effect. K
3
L)
e This model can be used to simulate hydration <
kinetics of cement replaced by common SCMs *

0 6 12 18 24
K Time (hour) j
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S&‘ Advanced Nucleation-and-Growth Model

e Phase boundary nucleation and growth (et )
| ' o |
models require hydrate’s growth rate (G, ;) = e |
to reproduce heat flow profiles 2 WAE = 0015 mia™ L
E 18 °® MAE=0.210 mW.g" |
e G, profile showed simpler structure and £
3
trend i
2
e ML optimized parameters for pBNG model,
which allowed it to reproduce the heat flow © 6 12 18 24
. Time (hour)
rate profiles T
Hydrate's Oytgard Syrgpals Rate |
. . = —PC "‘-13243& Flow Rate
e ML integrated with pBNG model produced E i [ v W |
superior predictions to standalone ML E*“’ ** MAE=0.370mwg |
. . £
e Nucleation and growth model regulate final az0.8
output to avoid violation of material laws. §0.4
0.0 ¥ ¥ v
0 6 12 18 24
K Time (hour) j
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Other applications of machine learnin
SiJOther 2po g

e Combine with game theory to f P e s i A j T t-\

: o cod 2 iﬁ E | Temmem, LA
develop simple, closed-form < AnalytigakMo  «
analytical models

— (1) Quantify “importance” of each

. ® 55 Optimized -
input parameter = . o ‘—Sg,\,',"g;f:nd
— (2) Construct a function usingonly | %5 caricn®~.] 5
. < - <.
“consequential” parameters g4 scm ’%e/
7p)
. . . . > .
— (3) Optimize the coefficients &
% 35 -

e Predict constructability and
compliance metrics of concrete

25
. — 1 T 1
— set time; rheology; steel rebar 0 20 40 60 80 100

- o oemmm ~s

corrosion potential; strength CS =C\ X2, + CoXeas + CsXean + CoXyp + Cs (Xeypoum + Xeaxsos)

Cg
. . e e + C¢XpaN. + C + C
e Material design to optimize . 7€xp(T) o
s ‘rﬁy I\P/Ic;r;g:;kljse;OEQS t 00’]—2 4 8 10 12

performance Pt A b b
Simiilated Solﬂ%hﬁﬁt Eron({lers 26?2& al. Cem Conc Res 2020
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Sé‘r Conclusions

e Using SCMs to partially replace cement become an emerging
solution for reducing the carbon emission in the cement industry

e Nucleation and growth model is the promising tool to reproduce
hydration kinetics of [cement + SCMs] systems

e |t cannot produce hydration kinetics for new systems without
knowing growth rate of hydrates

e Harness the power of machine learning to predict necessary
parameters for the nucleation and growth model

e The advanced nucleation and growth model can predict the
hydration kinetics of [cement + SCMs] systems without the
violation of material laws
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Sal

Questions?
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