Diagnostic Load Testing and Refined Analysis of Concrete Box Culverts

Presented by:

Amir Gheitasi, PhD, PE (Parsons) Christopher Gentz, PE (Oliver Communications Group, Inc.) Andrew J. Foden, PhD, PE (HNTB) Biniam Aregawi, PE (TxDOT)

> ACI Concrete Convention – Boston, MA Fall 2023

Overview

- > Introduction
- Methodology
- Diagnostic Load Testing
- Computational Modeling
- Refined Load Ratings
- Summary / Conclusions

Introduction

- > TxDOT has over 19,000 bridge-class culverts in their inventory.
- Bridge-class culverts:
 - Single or multi-cell box culverts that carry traffic.
 - Have total clear opening greater than 20ft along the roadway CL.
- They are part of the NBIS and receive routine inspections.
- Texas previously used <u>assigned load ratings</u> for these culverts.
- The assigned load rating applies when:
 - Plans are available for a culvert with an indicated design load.
 - An inspector determines that no new load rating calculation is required.
 - None of the principal structural elements have a condition rating below 5, or "moderate deterioration".
- Per FHWA requirements, ratings may only be assigned to in-service structures that are designed or checked using either <u>AASHTO LRFD or LFD</u> (HL-93 or HS-20 loads).
- TxDOT used Allowable Stress Design (ASD) until 1990's.

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

CONCRETE

Introduction

- > Approximately 1,600 bridge-class culverts, designed and constructed prior to 1999, were rated by TxDOT.
 - Rating analysis was performed using an <u>in-house proprietary software (i.e., CULVLR)</u>.
 - Load rating results indicated the need for posting on some culverts (RF <1.0).
 - Culverts have had <u>unrestricted traffic</u> through their service life, and exhibit <u>no major signs of distress</u>.
 - Some of the ratings indicate that the culverts are <u>"failing" under dead load only.</u>
- > It seemed evident that the ratings are <u>conservative</u> and not reflective of the in-service performance.
 - Assumptions were made based on the guidelines set forth in AASHTO Specifications.
 - Distribution behavior in culverts is based only on the fill height (2 ft is the critical depth).
 - Use of AASHTO equations could lead to conservative estimation of the loads on the culverts.
- ▶ <u>Methodology</u>: Multi-step process to <u>refine the ratings</u> of a select class of culvert (40+).
 - Diagnostic load testing (10 select culverts)
 - Refined Analysis (40+ culverts)

Diagnostic Load Testing

- Goal: understand the structural response, load distribution behavior
- Culvert Selection
 - Attributes with potential impact on performance (e.g., fill depth, culvert height, location, design standard)
 - Previous load rating results (e.g., controlling rating, failure mechanism, controlling section)
 - Most culverts selected were recommended for load posting per previous load rating analysis.

No.	No. of Cells	Cell Span ft (m)	Cell Height ft (m)	Fill Height ft (m)
1	3	9.0 (2.74)	9.0 (2.74)	2.0 (0.61)
2	4	10.0 (3.05)	14.0 (4.27)	9.0 (2.74)
3	6	8.0 (2.44)	8.0 (2.44)	0.0 (0.00)
4	3	10.0 (3.05)	12.0 (3.66)	7.0 (2.13)
5	3	10.0 (3.05)	10.0 (3.05)	7.0 (2.13)
6	3	10.0 (3.05)	5.0 (1.52)	5.0 (1.52)
7	3	10.0 (3.05)	10.0 (3.05)	0.0 (0.00)
8	2	10.0 (3.05)	10.0 (3.05)	0.0 (0.00)
9	4	8.0 (2.44)	7.0 (2.13)	1.0 (0.30)
10	2	10.0 (3.05)	7.0 (2.13)	1.0 (0.30)

Diagnostic Load Testing (cont.)

- Instrumentation
 - A combination of strain and displacement sensors were used.
 - Extension bracket used to increase the gauge length on concrete surface.
 - Non-homogenous composition of concrete
 - Surface cracks, large aggregates
 - Similar instrumentation on all tested culverts

Diagnostic Load Testing (cont.)

- Testing procedure
 - Similar procedure for all tested culverts
 - Five test configurations, each repeated 3 times
 - Test 1: Rear wheel lines aligned with instrumented sections
 - Test 2: center of test truck aligned with instrumentation Section A
 - Test 3: left rear wheel path aligned with instrumentation Section A
 - Test 4: left rear wheel path 3'-0" right of instrumentation Section A
 - Test 5: trucks 4 feet apart, centered over
 - instrumentation Section A

Diagnostic Load Testing (cont.)

Representative test results

Top slab deflection response

Strain distribution between slab/walls

aci

CONCRETE

CONVENTION

Computational Modeling

- 2D modeling and analysis
 - 1ft strip of culvert controlling segment, including soil-structure interaction
 - Mesh sensitivity analysis was performed
 - Initial attributes assumed per plans/previous ratings
 - Analyzed under DL and moving LL

Computational Modeling

- > 3D modeling and analysis
 - Full 3D representation, including soil-structure interaction
 - Optimized 2D mesh layout was utilized
 - Attributes calibrated based on test results
 - Analyzed under DL and moving LL

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Test

Computational Modeling (cont.)

- > 3D Model calibration
 - Modification of material attributes (iterative)

- 2D Model calibration
 - Ratio between test results and 2D model response

Computational Modeling (cont.)

- 2D/3D correlation study
 - Adoption of the calibrated material attributes and obtained 2D calibration factors
 - To ensure that the idealized (simplified) 2D models can accurately imitate 3D structural behavior
 - Goal: to achieve reasonable agreement between deflection response (test, 2D and 3D models)
 - Correlation study performed on three representative culverts (various fill heights)

Refined Load Ratings

- Load demands from calibrated 2D models
- Capacity calculations and load rating using LFR
- Factors (load, IM, MPF) according to AASHTO MBE
- Multi-step linear elastic analysis (progressive hinging)
 - Stage 1: initial load rating performed assuming full flexural fixities between walls/slabs
 - Stage 2: placing plastic hinges (i.e., moment release) where there was no reinforcement per plans
 - Stage 3: Placing additional hinges where RF OPR < 1.0 for design (HS-20) and legal trucks (SHVs & EVs).
 - Flexural overload would not induce a failure
 - No hinges applied in the middle of slabs and/or walls
 - Hinge placement cautiously conducted to avoid compromising the overall stability
- The stages were intended to simulate the progression of load re-distribution
- > All three stages were not performed for each of the 40+ culverts

Refined Load Ratings (cont.)

- Representative results (10 tested culverts)
 - Typical improvement (significant) in load rating results due to refined load distribution
 - Change in controlling section, due to redistribution of loads in the staged analysis
 - Majority of culverts most likely have experienced similar level of loads used in the refined analysis

No.	Previous Ratings		Refined Ratings		Rating Improv.
	Inventory	Operating	Inventory	Operating	Ratio
1	0.43	0.72	2.40	4.01	5.58
2	8.74	14.58	12.56	20.93	1.44
3	0.55	0.92	2.37	3.96	4.31
4	4.31	7.19	8.23	13.72	1.91
5	0.87	1.45	4.34	7.24	4.99
6	DL FAIL	DL FAIL	6.27	10.45	N/A
7	0.53	0.88	1.15	1.91	2.17
8	0.54	0.91	0.77	1.28	1.43
9	0.51	0.86	0.97	1.61	1.90
10	0.59	0.99	1.55	2.59	2.63

Summary and Conclusions

- > This project focused on refinement of load ratings of an inventory of in-service bridge-class culverts
 - Designed and constructed prior to 1999 using the Allowable Stress Design method.
 - Majority have been carrying unrestricted traffic for many years with no signs of significant distress.
 - Some received low ratings per previous load rating analysis.
- The project entailed a multi-step process to gain a better understanding of in-service performance and <u>load</u> <u>distribution behavior</u> of this class of culverts, and came up with a refined analytical approach that would help resolve the low ratings (potential for posting) of this target group of culverts
 - A group of ten culverts were load tested.
 - 3D FE models developed and calibrated using test results.
 - 2D models with calibrated attributes used for refined load ratings.
 - A multi-step linear elastic analysis was conducted to refine the ratings of 40+ culverts.

Questions?

Contact Details

Amir Gheitasi amir.gheitasi@parsons.com

Christopher Gentz cgentz@olivercomm.com

Andrew J. Foden afoden@HNTB.com

Biniam Aregawi biniam.aregawi@txdot.gov

