

Increasing the Seismic Moment Capacity of Concrete Columns Using EBR-FRP and FRP Anchors

Enrique del Rey Castillo Mike Griffith Jason Ingham

Fibre anchors

ENGINEERING

del Rey Castillo, Enrique, Michael Griffith, and Jason Ingham. "Seismic behavior of RC columns flexurally strengthened with FRP sheets and FRP anchors." *Composite Structures* 203 (2018): 382-395.

ENGINEERING

Shear strengthening

Flexural strengthening

FRP anchors are important!

Columns design

Design methodology

ENGINEERING

Response 2000 was used, from University of Toronto

- Concrete sectional and moment curvature analyses
- Plane sections remain plane
- ACI 440 and FRP anchor research
- Material properties obtained from testing:

Building of the columns

Installing FRP

Testing set-up

Results

Idealised bilinear elastic-perfectly plastic behaviour does not capture the behaviour of FRP strengthened RC columns

Behaviour

ENGINEERING

Stage 1: Elastic behaviour

Behaviour

ENGINEERING

Stage 2: Inelastic plateau or hardening

(b) Results from anchors – Column 2 cycle to $\pm 2.5\%$ drift

Results from sheets – Column 5 cycle to $\pm 2.5\%$ drift

Behaviour

ENGINEERING

Stage 3: Inelastic degradation

(a) General rupture of the longitudinal FRP sheets -Column 5

(b) Column 2 with all the anchors broken

(b) Results from anchors – Column 2 cycle to $\pm 5\%$ drift

Trilinear behavior

ENGINEERING

		Peak moment				Drift ratio at peak		
		(kNm/x10 ⁵ lb-ft)				(%)		
Column	R2k†	Push	Pull		R2k†	Push	Pull	
1	367/2.7	367/2.7†	367/2.7†		1.15	1.15‡	1.15‡	
2	509.3/3.8	495.3/3.7	501.7/3.3		3.61	1.33	1.41	
3	⁸ 511.2/3.8	497.5/5.1	444.3/4.7	bu	3.61	1.44	1.51	1
4	601.4/4.4	690.3/5.1	642.5/4.7	Wro	3.61	1.98	1.76	ı I
5	₹ 675.4/5.0	619.3/4.6	629.5/4.6	i i	3.61	1.95	3.01	1
6	67 <u>6</u> .2/5.0	685.1/5.1	<u>687.5/5.1</u>		3.61	2.49	2.30	l J

[†]Obtained with moment curvature analysis using Response 2000 (R2K)

‡ Point where the ductility of the curve change to ductile

Λ

M

ø

 $\Delta = \Delta'_{y} \frac{M}{M_{y}} + \left(\phi - \phi'_{y} \frac{M}{M_{y}}\right) L_{P} H$ Elastic Plastic Displacement Displacement Δ_{v} moment and moment and M_{y} curvature at curvature at ϕ'_{v} peak yield LSP

Plastic hinge model

Drift/displacement calculation

Proposed drift calculation Plastic hinge theory

$$\Delta = \Delta'_{y} \frac{M}{M_{y}} + \left(\phi - \phi'_{y} \frac{M}{M_{y}}\right) L_{P}H \Rightarrow L_{P} = \frac{\Delta - \Delta'_{y} \frac{M}{M_{y}}}{\left(\phi - \phi'_{y} \frac{M}{M_{y}}\right)H}$$

$$L_p = 2L_{SP}$$

$$L_{SP} = \psi f_y d_{bb}$$

 $L_{SP} = 0.0116 f_y d_{bl}$

ENGINEERING

Change to 0.05

Column	L _P (mm/inches)	ψ
C2-Push	182.52/7.2	0.011588
C2-Pull	182.52/7.2	0.011589
C3-Push	182.52/7.2	0.011589
C3-Pull	182.52/7.2	0.011589
C4-Push	182.54/7.2	0.011590
C4-Pull	182.54/7.2	0.011590
C5-Push	182.54/7.2	0.011590
C5-Pull	182.57/7.2	0.011592
C6-Push	182.55/7.2	0.011591
C6-Pull	182.55/7.2	0.011590
Average	182.54/7.2	0.0116
CoV (%)	0.01	0.01

Conclusion

- Negligible influence of tension-compression cycles and fatigue degradation on the anchor capacity
- Three behaviour stages as opposed to the bilinear idealised behaviour
- Bond breaking layer potentially controls drift
- Cross sectional analysis, FRP standards and FRP anchors research allows for moment capacity to be calculated accurately
- New proposals for calculating drift/displacement Further research needed

ENGINEERING

Questions Enrique del Rey Castillo <u>E.delrey@Auckland.ac.nz</u> LinkedIn ResearchGate