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+ Portland Limestone Cement
(OPC + Ground limestone ( > 15% mass)

—— Novel or Underutilized SCMs

* Off-spec SCMs (off-spec fly ash, natural
pozzolans, slags, etc.);

e Alternative ashes (bottom ash, reclaimed
ash, agricultural ash, etc.);

J

e Other industrial and natural products
(pumice, under-utilized clays, etc.);

* Powder extenders (limestone, biochar, etc.)

Designed for specific performance such as strength, pH,
transport properties, electrical properties, etc.
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« Chemical deterioration
— Corrosion of steel, AAR,
sulfate attack, acid attack,
carbonation, salt damage, etc.

upload.wikimedia.org/wikipedia/comm
ons/e/ea/Chungsong_bridge 04.jpg

* Physical deterioration
— Freeze/thaw damage, etc.

Water plays a major role in most deterioration
mechanisms !!!

commons.wikimedia.org/wiki/File:Figure_3_-
_ASR_cracks_concrete_step_barrier_FHWA_2006.PNG
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{ Moisture movement (e.g., wetting/drying, ponding, etc.) J
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https://commons.wikimedia.org/wiki/File:Osmosis_and_Diffusion_CLMiller_CC_BY_SA.png
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Using thermodynamical calculations...
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Can we predict properties we need? = ...
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Mixture
[/ opC } L oLC 1 A / \ Calculated Property
+ * Compressive Strength
* Porosity
{ SCM 1 } { SCM 2 } C e e Thermodynamically e Electrical resistivity
+ ‘ b d deli * Formation Factor (transport properties)
' ased moaeling * CH Content (CaOxy resistance, ASR, corrosion)
framework * Time to critical saturation (freeze-thaw)
* pH of pore solution (ASR, corrosion)

- /\
-

\ / 7 days 28 days 56 days

Azad et al (2017); Isgor and Weiss (2018); Bharadwaj et al. (2019, 2021); Glosser et al. (2019, 2021)
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Concrete Performance
INPUT Measures
C-S-H, g
Amounts of GEMS CH, AFt, AFm, etc.
OPC and SCM (thermodynamic * Compressive Strength
| oxide phases modeling - Gel pores, e Formation Factor
at agiven time software) Capillary pores,
SCMamonnt or degree of + Chemical shrinkage * CH Content (CaOxy
chemical hydration ( PPM resistance)
composition, x ot Pariitioning st * Time to critical
maximum reactivity Amount of water model) Con:z:is;:ilsig,l pH, R - ( Pt b
; life)
Isgor & Weiss (2018)
T - ;2.0(122)19) Bharadwaj et al. (2019) * pH of pore solution
B oy (ASR)
[ W MPK Kinetic
Pozzolanic model for OPC Bharadwaj et al. (2019, 2021)
Reactivity Test and SCM
(maximum
degree of
| V) ] Glosser et al. (2021)
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Concrete Performance
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Concrete Performance
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Thermodynamically calculated chloride binding isotherms:

— o, - = ] + -

3 604 (@) 100% OPC _ (b) 60% OPG + 40% Siag B T 604 (C)60% OPC +40% FA _

15} S 6.0 -~ I3

© 5] ] @

E 50+ © E 50 sl

E E 5.0 - E

8 E 8

g 401 - 8 40 v 404

) puep—rt, | o] ) -

5 30- . — $ 30- 2 %01

[N ) - — o —_— ]

" | B . ~ ) , 0 e Experimental data

O 20 - m  Experimental data ] 1 . A Experimental data o 204 /0 I .

= [ «-- Freundlich isotherm (experimental) 8 207 . - Freundlich isotherm (experimental) b . E;e”"d"f"! '5‘;’:“9”" {exp'?"me?a‘?'}

) . —— Langmuir isotherm (experimental) :_'5 i —— Langmuir isotherm (experimental) % 174 Thngmutljr S0 ‘emél(se:qpsenm;enl t]'l

S 1.0/ Thermodynamic (GEMS) calculations S 1.0 4 Thermodynamic (GEMS) calculations C 1.0+ ermodynamic ( ) calculations

o Freundlich isotherm (thermodynamic) o ] —— Freundiich isotherm (thermodynamic) 2 ] = = - Freundlich isotherm (thermodynamic)

§ 0.0 ' —— Langmuir isotherm (thermodynamic) § 0.0 - — - Langmuir isotherm (thermodynamic) 3 0.0 ' Langmuir isotherm (thermodynamic)
B & T & I 1 B 1 o T 1 . I 1 Ll T T ] . g I S T B 1 & T & T . 1

Q 0 500 1000 1500 2000 2500 3000 @ 0 500 1000 1500 2000 2500 3000 @ 0 500 1000 1500 2000 2500 3000

Free chlorides (mol/m® of pore solution) Free chlorides (mol/m® of pore solution) Free chlorides (mol/m® of pore solution)

(Isgor and Weiss, Materials and Structures, 2019)

(Azad et al., Computer & Geosciences, 2016)
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Modeling reactive transport processes in concrete for predicting service life is
possible irrespective of

* Chemical composition of the materials

* Reactivity of the materials

We can do this using a coupled approach in which we model reactive processes
using thermodynamic / kinetic algorithms and transport processes using finite
element analysis.

This approach eliminates the need to experimentally characterize every concrete
mixture for modeling, hence it is dubbed “self-sufficient”.

This approach allows the modeling of concrete produced with underutilized,
novel, low-carbon footprint binders and powder extenders.
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