INVESTIGATING INTERFACE SHEAR RESISTANCE THROUGH SLANT SHEAR TESTS: A CRITICAL REVIEW OF CURRENT DESIGN CODES

Brandon Li, Andrea Campos Sanchez Dennis Wang, Yongjae Yu, Anca Ferche, Oguzhan Bayrak

OUTLINE

INTRODUCTION

"Cities are not static – they are growing"

INTRODUCTION

Strut Crossing Cold Joint in Stage Construction (Bayrak, 2020)

Strut Crossing Cold Joint in Retrofitted Pier Cap (Bayrak, 2020)

Test Matrix – Series I: Angle

Series	Groups	Angle (°)	Interface Roughness	Concrete Strength	Casting Age	Agg. Size
	I-30	30	R1	N-N	3 days	A1-A1
I Anglo	I-38	38	R1	N-N	3 days	A1-A1
I-Angle	I-45	45	R 1	N-N	3 days	A1-A1
	I-60	60	R 1	N-N	3 days	A1-A1
	II-M	-	Μ	N-N	3 days	A1-A1
II-Interface	II-NR	30	NR	N-N	3 days	A1-A1
Roughness	II-R1	30	R1	N-N	3 days	A1-A1
-	II-R2	30	R2	N-N	3 days	A1-A1
III-Concrete	III-H1	30	R1	N-H1	3 days	A1-A1
Strength	III-H2	30	R 1	N-H2	3 days	A1-A1
	IV-1/6	30	R1	N-N	4 hours	A1-A1
IV-Casting Age	IV-28	30	R 1	N-N	28 days	A1-A1
	IV-56	30	R 1	N-N	56 days	A1-A1
V-Aggregate	V-A2	30	R1	N-N	3 days	A1-A2
Size	V-A3	30	R 1	N-N	3 days	A1-A3

38°

45° 60° CONCRETE CONVENTION

Test Matrix – Series II: Interface Roughness

Series	Groups	Angle (°)	Interface Roughness	Concrete Strength	Casting Age	Agg. Size
	I-30	30	R1	N-N	3 days	A1-A1
I Angla	I-38	38	R1	N-N	3 days	A1-A1
I-Aligie	I-45	45	R1	N-N	3 days	A1-A1
	I-60	60	R1	N-N	3 days	A1-A1
	II-M	-	Μ	N-N	3 days	A1-A1
II-Interface	II-NR	30	NR	N-N	3 days	A1-A1
Roughness	II-R1	30	R 1	N-N	3 days	A1-A1
	II-R2	30	R2	N-N	3 days	A1-A1
III-Concrete	III-H1	30	R1	N-H1	3 days	A1-A1
Strength	III-H2	30	R1	N-H2	3 days	A1-A1
	IV-1/6	30	R1	N-N	4 hours	A1-A1
IV-Casting Age	IV-28	30	R1	N-N	28 days	A1-A1
	IV-56	30	R1	N-N	56 days	A1-A1
V-Aggregate	V-A2	30	R1	N-N	3 days	A1-A2
Size	V-A3	30	R1	N-N	3 days	A1-A3

Test Matrix – Series III: Variation in Concrete Strength

Series	Groups	Angle (°)	Interface Roughness	Concrete Strength	Casting Age	Agg. Size
	I-30	30	R1	N-N	3 days	A1-A1
I Angla	I-38	38	R1	N-N	3 days	A1-A1
I-Aligie	I-45	45	R1	N-N	3 days	A1-A1
	I-60	60	R1	N-N	3 days	A1-A1
	II-M	-	Μ	N-N	3 days	A1-A1
II-Interface	II-NR	30	NR	N-N	3 days	A1-A1
Roughness	II-R1	30	R 1	N-N	3 days	A1-A1
-	II-R2	30	R2	N-N	3 days	A1-A1
III-Concrete	III-H1	30	R1	N-H1	3 days	A1-A1
Strength	III-H2	30	R 1	N-H2	3 days	A1-A1
	IV-1/6	30	R1	N-N	4 hours	A1-A1
IV-Casting Age	IV-28	30	R 1	N-N	28 days	A1-A1
	IV-56	30	R 1	N-N	56 days	A1-A1
V-Aggregate	V-A2	30	R1	N-N	3 days	A1-A2 -
Size	V-A3	30	R1	N-N	3 days	A1-A3

3.8

Test Matrix – Series IV: Casting Age Difference

			Interface	Concrete	Casting			Days		
Series	Groups	Angle (°)	Roughness	Strength	Age	Agg. Size		0 20	40	60
	I-30	30	R1	N-N	3 days	A1-A1	-			
I Anala	I-38	38	R1	N-N	3 days	A1-A1	IV-1/6			
I-Angle	I-45	45	R1	N-N	3 days	A1-A1				
	I-60	60	R1	N-N	3 days	A1-A1	_	Concrete Placeme	ent Delay	
	II-M	-	Μ	N-N	3 days	A1-A1	-			
II-Interface	II-NR	30	NR	N-N	3 days	A1-A1	I,II,III,V			
Roughness	II-R1	30	R1	N-N	3 days	A1-A1		Stage Construction	on	
	II-R2	30	R2	N-N	3 days	A1-A1	_			
III-Concrete	III-H1	30	R1	N-H1	3 days	A1-A1	IV-28			
Strength	III-H2	30	R1	N-H2	3 days	A1-A1				
	IV-1/6	30	R1	N-N	4 hours	A1-A1		Repair & Retrofit	ţ	
IV-Casting Age	IV-28	30	R1	N-N	28 days	A1-A1		1		
	IV-56	30	R1	N-N	56 days	A1-A1	IV-56			
V-Aggregate	V-A2	30	R1	N-N	3 days	A1-A2				
Size	V-A3	30	R1	N-N	3 days	A1-A3				

Test Matrix – Series V: Aggregate Size

Series	Groups	Angle (°)	Interface Roughness	Concrete Strength	Casting Age	Agg. Size
	I-30	30	R1	N-N	3 days	A1-A1
I Angla	I-38	38	R1	N-N	3 days	A1-A1
I-Aligie	I-45	45	R1	N-N	3 days	A1-A1
	I-60	60	R1	N-N	3 days	A1-A1
	II-M	-	Μ	N-N	3 days	A1-A1
II-Interface	II-NR	30	NR	N-N	3 days	A1-A1
Roughness	II-R1	30	R 1	N-N	3 days	A1-A1
-	II-R2	30	R2	N-N	3 days	A1-A1
III-Concrete	III-H1	30	R1	N-H1	3 days	A1-A1
Strength	III-H2	30	R1	N-H2	3 days	A1-A1
	IV-1/6	30	R1	N-N	4 hours	A1-A1
IV-Casting Age	IV-28	30	R 1	N-N	28 days	A1-A1
	IV-56	30	R 1	N-N	56 days	A1-A1
V-Aggregate	V-A2	30	R1	N-N	3 days	A1-A2
Size	V-A3	30	R1	N-N	3 days	A1-A3

Substrate A1-5/8"

Overlay A2-Sand

Overlay A3-3/8"

Specimen Fabrication

Test Setup

NDI Optical Tracking System

Sulfur Cap for Contact Surface

Target Arrangement

Failure Mechanisms Data Processing Methodology $\sin \theta_{ci}$ v $P\sin\theta_{ci}$ u θ_{cj} Crushing of concrete Slant shear failure Hybrid failure CONVENTION THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Capacity and Failure Mode

CONCRETE CONVENTION

Series I – Inclination: Alternate Failure Mode

Series II – Interface Roughness: Capacity Decrease with Roughness

Series III – Variation of Concrete Strength: Crushing at Weaker Layer

16

Series IV – Casting Age Difference: Capacity Increase with Age Difference

17

Series V – Aggregate Size: Capacity Decrease with Aggregate Size

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

ONVENTION

Roughening with 0.125-inch amplitude was applied to the specimens

Design code	de Amplitude (in.) c (ksi)		μ	Design Expression
	< 0.25	0.075	0.6	
	≥ 0.25	0.24	1.0	$\tau_n = c + \mu(\rho f_y + \sigma_n)$
	< 0.25	N/A	0.6λ	
ACI 318-19	≥ 0.25	N/A	1.0λ	$\tau_n = \mu(\rho f_y \sin \alpha + \sigma_n) + \rho f_y \cos \alpha$
CSA A22 2.10	< 0.2	0.036	0.6	
CSA A25.5:19	≥ 0.2	0.073	1.0	$\tau_n = \lambda [c + \mu (\rho f_y \sin \alpha + \sigma_n)] + \rho f_y \cos \alpha$
Design code	Amplitude (in.)	Ca	μ	Design Expression
	< 0.06	0.35	0.6	
fib MC2010	≥ 0.06, < 0.12	0.45	0.7	$\tau_n = c_a f_{ctd} + \mu (\rho f_y sin\alpha + \sigma_n) + \rho f_y cos\alpha$
	≥ 0.12	0.5	0.9	
	< 0.12	0.2	0.6	
Eurocode 2	≥ 0.12	0.4	0.7	$\tau_n = c_a f_{ctd} + \mu(\rho f_y sin\alpha + \sigma_n) + \rho f_y cos\alpha$

Current Design Code

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

CONVENTION

Current Design Code

21

RI Approach - define cold joint as roughened interface disregarding the amplitude

Design code	Amplitude (in.)	$mplitude (in.) \qquad c (ksi) \qquad \mu \qquad De$		Design Expression				
A A SUTO I DED	< 0.25	0.075	0.6					
	≥ 0.25	0.24	1.0	$\tau_n = c + \mu(\rho f_y + \sigma_n)$				
A CL 210, 10	< 0.25	N/A	0.6λ					
ACI 318-19	≥ 0.25	N/A	1.0λ	$\tau_n = \mu(\rho f_y \sin\alpha + \sigma_n) + \rho f_y \cos\alpha$				
CS A A 22 2.10	< 0.2	0.036	0.6					
CSA A23.3:19	≥ 0.2	0.073	1.0	$\tau_n = \lambda [c + \mu (\rho f_y \sin \alpha + \sigma_n)] + \rho f_y \cos \alpha$				
			-					
Design code	Amplitude (in.)	ca	μ	Design Expression				
	< 0.06	0.35	0.6					
fib MC2010	≥ 0.06, < 0.12	0.45	0.7	$\tau_n = c_a f_{ctd} + \mu (\rho f_y sin\alpha + \sigma_n) + \rho f_y cos\alpha$				
	≥ 0.12	0.5	0.9					
	< 0.12	0.2	0.6					
Eurocode 2	≥ 0.12	0.4	0.7	$\tau_n = c_a f_{ctd} + \mu(\rho f_y \sin \alpha + \sigma_n) + \rho f_y \cos \alpha$				

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

CONVENTION

RI Approach

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

CONVENTION

LIF Approach - factors are linear interpolated based on the roughness amplitude

LIF Approach

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

CONVENTION

DATABASE ANALYSIS

Source	Number of Specimens	Geometry	θ_{cj} (°)	R _a (in.)	D (in.)	Roughening Approach
Figueiredo et al.	75	cylindrical	30	0.034 - 0.22	5.51	hand-scrubbing; vibrating
Santos & Júlio	150	prismatic	30	0.01 - 0.048	5.91	wire-brushing; sandblasting; shotblasting; hand-scrubbing
Diab et al.	150	cylindrical	30	0.12, 0.24	5.91	patterned groves
Saldanha et al.	12	prismatic	30	0.197, 0.59	5.91	hand-scrubbing; patterned groves
Hu et al.	96	cylindrical	30, 40	0.12, 024	2.77	patterned groves
3.5 3.0 2.5 $\overline{\mathfrak{G}} 2.0$	 Current Code, R² = 0.80 LIF, R² = 0.91 	3.5 3.0 2.5 3.0 2.5	Current Code, F LIF, R ² = 0.86	R ² = 0.75	3.5 3.0 2.5 $\overline{52}$ 2.0	Current Code, $R^2 = 0.80$ LIF, $R^2 = 0.89$

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

0

CONVENTION

CONCLUSIONS & FUTURE WORK

CONCLUSIONS

- Applying intentional roughening and using larger aggregate size improve the capacity of cold joint significantly.
- The control failure mode switch from slant shear to compression failure by increase the inclination.
- Cold joint capacity estimated by LIF demonstrate better alignment with the experimental results.
- LIF is more impactful on intentionally roughened interface with higher shear capacity.

FUTURE WORK

- Large scale slant shear column
- Deep beam with cold joint
- Drill-shaft footing with expansion
- Shear-slip relationship of interface for FEA

ACKNOWLEDGEMENT

This research is sponsored by Texas Department of Transportation

CONTACT INFORMATION

Brandon Li b128458@my.utexas.edu

Andrea Campos Sanchez andrea.campossanchez@utexas.edu

