Duracrete/fib Bulletin 34 Service Life Model and AASHTO Guide Specification for Service Life Design of Highway Bridges

Brad J. Pease, Ph.D., P.Eng., brpe@cowi.com COWI North America Fook Yee Yang, MASc., EIT Anne-Marie Langlois, M.Sc., PE, P.Eng.

- History of Service Life
 Design Development
- Chloride-Induced Corrosion Model from fib Bulletin 34
- Review Workshop Modelling Cases vs Model Limitations
- Modeled Cases & Input Parameters
- Application of AASHTO Guide Specification
- Results & Conclusions

FHWA Service Life Design Reference Guide https://www.fhwa.dot.gov/bridge/preservation/docs/h if22052.pdf

AASHTO Guide Specification for Service Life Design

CSA S6:19 (2019) introduces fib Bulletin 34 based modelling in commentary

SHRP2 R19A Project, Service Life Design for Bridges - Summary Guide (2019) https://shrp2.transportation.org/Pages/ServiceLifeDe signforBridges.aspx

fib Bulletin 34 approach applied to Gov. Mario Cuomo & Abraham Lincoln Bridge

ISO 16204 "Durability – Service Life Design of Concrete Structures"

International Federation for Structural Concrete (fib) Task Group 5.6 developed fib Bulletin 34

DuraCrete project - Framework for a probabilistic based durability design of concrete structures

CEB (now fib) General Task Group No. 20: Durability and Service Life of Concrete Structures

fib Bulletin 34 Chloride-Induced Corrosion Model

- Chloride Ingress Fick's 2nd Law of Diffusion to Corrosion Initiation
- Red Environmental Loading
 - C_o & C_s are the Chloride Background and Surface Concentrations
 - T_{real} is the annual mean Temperature at the project site
- Green Material Resistance
 - D_{RCM,0} is the Chloride Migration Coefficient (NT Build 492)
 - α is the Aging Exponent
 - a is the Concrete Cover
 - Δx is the Transfer Function

 $C_{crit} \ge C(x = a, t) = C_{o} + (C_{s,\Delta x} - C_{o}) \cdot \left[1 - erf\left(\frac{a - \Delta x}{2\sqrt{D_{app,C} \cdot t}}\right)\right]$ $D_{app,C} = k_{e} \cdot D_{RCM,0} \cdot k_{t} \cdot A(t)$ $k_{e} = exp\left(b_{e}\left(\frac{1}{T_{ref}} + \frac{1}{T_{real}}\right)\right)$ $A(t) = \left(\frac{t_{o}}{t}\right)^{\alpha}$

fib Bulletin 34 Input Parameters

Variable	Symbol	Short description	fib Bulletin 34 recommendations	Distribution	Unit
Cover	а	Concrete thickness measured from concrete surface to the surface of the outermost steel reinforcement.	Distribution function for large cover depths typically a normal distribution whereas for small cover depths, distributions excluding negative values should be chosen, such as the lognormal function.	Normal	mm (in)
Temperature	T _{real}	Temperature of the structural element or the ambient air.	$T_{\mbox{\scriptsize real}}$ can be determined by using available data from a weather station nearby the structure.	Normal	°C (°F)
Initial chloride concentration	Co	Initial chloride content in concrete at time t = 0.	Initial chloride content in the concrete is not only caused by chloride ingress from the surface, but can also be due to chloride contaminated aggregates, cements or water used for the concrete production. The total amount of chlorides present in the concrete mix will be determined during the construction phase and will be specified to be less than the assumed value.	Deterministic	Mass-% of total cementitious materials
Surface concentration	C _{s,∆x}	Chloride content at the depth Δx .	Surface concentration depends on material properties and on geometrical and environmental conditions. Ideally, data is gathered from similar structures.	Lognormal	Mass-% of total cementitious materials
Chloride migration coefficient	D _{RCM,0}	Chloride migration coefficient measured from NT Build 492 at 28 days.	Standard deviation of the chloride migration coefficient to be 0.2 times the mean value. The mean value is assumed in the model such that the desired reliability index is obtained.	Normal	x 10 ⁻¹² m ² /s

fib Bulletin 34 Input Parameters

Variable	Symbol	Short description		fib Bulletin 34 recommendations							Distribution	Unit
			Recomm ratio bet	ended values fo ween 0.40-0.60	or agein :	g factors for	r concrete w	ith an equiva	alent water-	cement		
				Commente minere	Dista	Submerged/b level, de-icin	ouried, water g salts zones	Atmosph	eric zone			
Ageing factor Ω Time-dependent change of the migration coefficient as concrete matures.	Concrete mixes	Distr.	Parameters	Mean (µ)	Parameters	Mean (µ)		Beta	-			
	concrete matures.		Portland Cement + 20-35% FA	Beta	σ=0.15, a=0; b=1	0.60	σ=0.15, a=0; b=1	0.65				
			Portland Cement	Beta	σ =0.12, a=0; b=1	0.30	σ=0.15, a=0; b=1	0.65				
			μ = mean value; σ = standard deviation; a and b are the upper and lower bo					ower bound	s.			
Transfer function	Δx	Consideration of capillary action causing rapid transport of chlorides to a depth Δx	The follo - For wa value of - For bu	The following values for the transfer function: - For water level, direct and indirect de-icing salts zones: beta distribution with a mean value of 8.9 mm, standard deviation of 5.6 mm with parameter a = 0.0 and b = 50.0. - For buried, submerged, and atmospheric zones: deterministic value of 0.					Beta	mm (in)		
Critical chloride concentration	C _{cr}	Chloride concentration required to depassivate reinforcement	Beta dis on unco 0.2, and	Beta distribution with a mean value of 0.6% by mass of cementitious materials (based on uncoated carbon steel reinforcement), a standard deviation of 0.15, a lower bound of 0.2, and an upper bound of 2.0.					(based bound of	Beta	Mass-% of total cementitious materials	

fib Bulletin 34 Chloride-Induced Corrosion Model

- · Influential inputs are probabilistic distributions
- Fick's 2nd law-based model provides time, d_c depth where critical chloride threshold reached
- Probabilistic consideration of cover thickness (d_c)
- Overlap indicates increasing probability for critical chloride content at reinforcement depth

fib Bulletin 34 Chloride-InducedCorrosion Modeldeterioration

- Service life limit state is defined as a 10% probability for depassivation
 - Reliability index, β of ~1.30
 - 90% probability that corrosion will not initiate during service life
- Similar to serviceability limit state
 - Reaching limit state ≠ immediate failure

Model Cases & Parameters

	Case 1	Case 2	Case 3	
Location		Boston, MA		
Element	Bridge Deck	Marine Pile	Marine Wall	
Thickness/Diameter	8 in	36 in	8 in	
Exposure	Deicing Salt	Submerged	Splash	
Target Initiation Time with 90% Confidence		100 years		
Cover	2.5 in	3.0 in	3.0 in	
Maximum Surface Concentration	5500 ppm	8000 ppm	10000 ppm	
Black Bar Initiation Threshold		735 ppm		
Enhanced Initiation Threshold		2500 ppm		
Hydration Time	8 years			

Table 4. Modeling Cases and Parameters

Acknowledging Model Limitations

- *fib* Bulletin 34 probabilistic model was developed for concrete cast in formwork
 - Not developed/appropriate for modeling concrete cast immediately against soil
 - Cannot be used for retaining walls not cast in formwork (e.g., secant pile walls)
 - Case 2 not applied
 - Case 3 is assumed to be cast in formwork, backfilled or similar

Model Cases & Parameters – Concrete Types

100% Type I/II Cement 20% Hyaloclastite 8% Silica Fume (SF-8) (CTRL) Pozzolan (HP-20) 658 lb/cy Type I/II Cement 605 lb/cy Type I/II Cement • 526 lb/cy Type I/II Cement • 0.38 w/cm ratio 53 lb/cy Silica Fume 132 lb/cy Hyaloclastite Pozzolan, Class N/F 14.0 x 10⁻¹² m²/s Chloride 0.38 w/cm ratio ASTM C618 **Migration Coefficient** 3.6 x 10⁻¹² m²/s Chloride 0.38 w/cm ratio **Migration Coefficient** 9.6 x 10⁻¹² m²/s Chloride **Migration Coefficient**

Assessments Performed

* To facilitate discussions, modelling was completed using workshop input parameters. Certain inputs are not standard values as supported by fib Bulletin 34 and various other references.

Model Cases

Case	Concrete Type	Key Differing Det	ails/Assumptions
		Workshop defined inputs	fib Bulletin 34 recommended inputs
Case 1 – Bridge	CTRL	- Hydration time = 8 yrs	- Aging factor 'on' for
Deck	SF-8	- Age factor from test	duration of target
2.5" Cover	HP-20	data (not per fib Bulletin 34)	on published values
Case 3 – Marine	CTRL	- C Values:	- C _{crit} Values:
Wall	SF-8	- Black bar – 0.45%	- Black bar – 0.60%
3" Cover	HP-20	- "Enhanced" – 1.5%	- "Enhanced" – 1.5%

Interpretation of Parameters

Maximum surface concentrations prescribed:

Table 4. Modeling Cases and Parameters

	Case 1	Case 2	Case 3
Maximum Surface Concentration	5500 ppm	8000 ppm	10000 ppm

"Maximum" concentration set as 95% quantile & mean concentration determined

Mean Surface Chloride Concentration -Lognormal Distribution

Interpretation of Parameters

Exposure Cases	Mean Surface Concentration (% by mass cem)				
	Mean, µ	Std Dev, σ			
Case 1 – Bridge Deck	2.3	0.7			
Case 3 – Marine Wall	3.4	1.0			

Concentrations conversions used 658 lbs/cy (390 kg/m³) cementitious materials content & 4050 lbs/cy (2400 kg/m³) unit weight of concrete

Mean Surface Chloride Concentration -Lognormal Distribution

14 01 Nov 2023 Duracrete/fib Bulletin 34 Service Life Model

Interpretation of Parameters – Age Factors

- Workshop Input Parameters included ASTM C1760 Bulk Electrical Conductivity results at 28, 56, 90 days
- Workshop approach was to determine age factors as best fit on log-log plot

Interpretation of Parameters – Age Factors

Workshop Approach

- Calculated by plotting Bulk Electrical Conductivity test results (ASTM C1760) against time on a logarithmic scale
- Results only available at 28, 56, and 90-day period
- Instructions to workshop provided this methodology to calculate age factors for each mix design

fib Approach

- Relies on published results in fib Bulletin 34, 76, etc.
- With new materials, age factors are calculated by plotting apparent chloride diffusion, D_{app} against time on a logarithmic scale – *fib* 76 recommends collecting data for 2 years
- D_{app} calculated using chloride migration coefficient (NT Build 492 test)

Interpretation of Parameters – Age Factors

Concrete	W	orkshop ap	proach	fib Bulletin 34 approach			
Гуре	Mean, µ	Std Dev, σ	Duration, yrs	Mean, µ	Std Dev, σ	Duration, yrs	
CTRL	0.35	0.09	8	0.30	0.12	100	
SF-8	0.32	0.08	8	0.30	0.12	100	
HP-20	0.85	0.21	8	0.60	0.15	100	

- Age factor modeled as a beta distribution
- Bounds of beta distribution for HP-20 for workshop approach: a = 0, b = 1.5
- Age factor for SF-8 equal to CTRL for fib Bulletin 34 approach
- HP-20 treated as Class F fly ash for selection of age factor for fib bulletin 34 approach

Interpretation of Parameters – Chloride Threshold

	W	orkshop Thres	o Chlori shold	de	fib/AASHTO Chloride Threshold			
	Mean, μ	Std Dev, σ	а	b	Mean, µ	Std Dev, σ	а	b
Black rebar	0.45	0.14	0.2	2	0.60	0.15	0.2	2
Enhanced rebar	1.50 0.30 0.9 2.9				1.50	0.15	1.1	2.9

- Beta distribution bounds (a and b) for Workshop input parameters adjusted to obtain S- shaped curve
- Other values were applied based on *fib* Bulletin 76 or AASHTO Guide Spec recommendations

Interpretation of Parameters – Chloride Threshold

- Beta distributions used to model critical chloride content
 - Includes upper and lower bounds
- Important to verify all distribution curves are rational

Interpretation of Parameters – Initial Chloride Content

- Workshop input parameter: 85 ppm in concrete
 - Calculated to be 0.05% by mass of binder (based on 658 lbs/yd³ cementitious material)
- fib Bulletin 34 input parameter: 0.10% by mass of binder

Comparison of Results – Black Bar

Case	Concrete	Model Outputs						
	туре	Workshop de	efined inputs	fib Bulletin 34 inputs				
		t @ β = 1.30	β @ 100 years	t @ β = 1.30	β @ 100 years			
Case 1 –	CTRL	5 to 10 yrs	-2.2	5 to 10 yrs	-0.93			
Bridge	SF-8	20 to 25 yrs	-0.82	35 to 40 yrs	0.29			
2.5" Cover	HP-20	55 to 60 yrs	0.81	85 to 90 yrs	1.20			
Case 3 –	CTRL	5 to 10 yrs	-2.4	10 to 15 yrs	-0.94			
Marine Wall 3" Cover	SF-8	25 to 30 yrs	-0.72	40 to 45 yrs	0.35			
	HP-20	65 to 70 yrs	0.94	95 to 100 yrs	1.28			

Comparison of Results – Enhanced Bar

Case	Concrete	Model Outputs							
	туре	Workshop de	efined inputs	fib Bulletin 34 inputs					
		t @ β = 1.30	β @ 100 years	t @ β = 1.30	β @ 100 years				
Case 1 –	CTRL	35 to 40 yrs	0.35	45 to 50 yrs	0.74				
Bridge Deck	SF-8	>100 yrs	1.53	>100 yrs	1.88				
2.5 60061	HP-20	>100 yrs	2.25	>100 yrs	2.43				
Case 3 –	CTRL	25 to 30 yrs	-0.22	30 to 35 yrs	0.26				
Marine Wall 3" Cover	SF-8	95 to 100 yrs	1.28	>100 yrs	1.61				
	HP-20	>100 yrs	2.07	>100 yrs	2.22				

AASHTO Guide Specification – Calibrated Deemed to Satisfy Approach

	Tuble 112		iniai concrete	eover negune	inemis (commucu)				
	Evenence Class						Service Life Category		
AASHIO		Exposi	ire Class		Concrete Type ²	Reinforcement Class ³	Normal	Enhanced	Maximum
	Class	Condition	Description	Examples		Cluss		Cover (in) ^{1,}	,4
					Any	D	1.0	1.0	1.0
GUIDE SPECIFICATION FOR Service Life Design					OPCFA+SF	С	1.5	1.5	1.5
of Highway Bridges					OPCFA	С	1.5	1.5	2.0
1st Edition 2020			Surfaces in contact with	Substructures within tidal	GGBS+SF	С	1.5	2.0	2.0
		Marine -			GGBS	С	2.0	2.0	2.5
	C-M3	Tidal or	salt water		OPC	С	3.5	4.0	
	C-1415	Splash/Spray	tidal zone or	zone or	OPCFA+SF	В	2.0	2.0	2.5
		Zone	splash/spray	splash/spray	OPCFA, GGBS+SF	В	2.5	2.5	3.0
			zone		GGBS	В	3.5	3.5	4.0
					OPCFA+SF	Α	3.0	3.0	3.5
918 1.56051.741-2 [H85LD-1					OPCFA	Α	3.5	4.0	4.0
	1				GGBS+SF	А	3.5	4.0	

Table 4.2.4.2.2-1—Nominal Concrete Cover Requirements (continued)

AASHTO Guide Specification – Calibrated Deemed to Satisfy Approach

Case	Concrete	AASHTO Guide Specif	ication Required Cover		
Туре		Black Bar	Enhanced Bar		
Case 1 –	CTRL	N.A.	N.A.		
Bridge Deck	SF-8	N.A.	N.A.		
2.3 60061	HP-20	3" Required	2" Required		
Case 3 –	CTRL	N.A.	N.A.		
Marine Wall 3" Cover	SF-8	N.A.	N.A.		
	HP-20	4" Required	2.5" Required		

Summary of Results

Case	Concrete Type	Viable Option for 100 Year Service Life?					
		Black Bar			Enhanced Bar		
		Workshop	fib 34	AASHTO	Workshop	fib 34	AASHTO
Case 1 – Bridge Deck 2.5" Cover	CTRL						
	SF-8				0	0	
	HP-20			3"	0	٢	2"
Case 3 – Marine Wall 3" Cover	CTRL						
	SF-8				0	0	
	HP-20		😐 (β = 1.28)	4"	0	0	2.5"

Summary & Conclusions

- Care is needed with available modeling tools:
 - Know the limitations, fundamental assumptions of the modeling tools used
 - Modify default input parameters with caution
 - · Expert involvement required with complex models to yield reliable results
- Similar conclusions found using workshop and fib Bulletin 34 input parameters in terms of viable combinations of concrete and reinforcement types to achieve 100 year service life
 - Maintaining aging for duration of service life resulted in slight increases in time @ β = 1.30 and β at 100 years
- Use of rebar with enhanced corrosion-resistance is effective and can permit use of concrete with reduced durability performance
- Use of calibrated deemed-to-satisfy method from AASHTO Guide Specification provided similar conclusions, offers a solution avoiding improper use of input parameters but with limited mix design currently considered

Questions

