Exploring Machine Learning to Predict Concrete Field Performance Against Alkali-Aggregate Reaction (AAR)

PhD Candidate: Ana Bergmann Supervisor: Dr. Leandro Sanchez

Introduction

REF: Sanchez et al (2015)

Classification of the damage degree in concrete due to ASR.

Classification of ASR damage degree (%)	Reference expansion level (%) ^a	Assessment of ASR					
		Stiffness loss (%)	Compressive strength loss (%)	Tensile strength loss (%)	SDI	DRI	
Negligible	0.00-0.03	-	-	-	0.06-0.16	100-155	
Marginal	0.04 ± 0.01	5-37	(-)10-15	15-60	0.11-0.25	210-400	
Moderate	0.11 ± 0.01	20-50	0–20	40-65	0.15-0.31	330-500	
High	0.20 ± 0.01	35-60	13–25	45-80	0.19-0.32	500-765	
Very high	0.30 ± 0.01	40-67	20–35		0.22-0.36	600-925	

^a These levels of expansion should not be considered as strict limits between the various classes of damage degree but more as indicators/reference levels for which comparative analysis of petrographic and mechanical data was carried out allowing to highlight significant damage levels in concrete due to the progress of ASR.

REF: Sanchez et al (2017)

CONVENTION

Background

Laboratory testing

Drooduro	Sample			Test		
Procedure	Shape	Size	Temperature	Storage	duration	
Accelerated Mortar Bar Test – AMBT – (RILEM AAR-2.1)	Prism	25x25x285mm ³	80°C	Samples immersed in a 1M NaOH solution	14 days	
Accelerated Mortar Bar Test – AMBT – (RILEM AAR-2.2 / ASTM C1260-22 / AS 1141.60.1)	Prism	40x40x160mm ³	80°C	Samples immersed in a 1M NaOH solution	14 days	
Concrete Prism Test – CPT – (RILEM AAR-3 / CSA A23.2-14A / AS 1141.60.2)	Prism	75x75x250mm ³	38°C	RH>95%	52 weeks	
Accelerated Concrete Prism Test – ACPT – (RILEM AAR-4 / RILEM AAR-11 / ASTM C1293)	Prism	75x75x250mm ³	60°C	RH>95%	20 weeks	
Concrete Microbar Test – CMBT – (RILEM AAR-5)	Prism	40x40x160mm ³	80°C	Samples immersed in a 1M NaOH solution	14 days	
Miniature concrete prism test – MCPT (AASHTO T380)	Prism	50x50x285mm ³	60°C	Samples immersed in a 1M NaOH solution	56 days	
Danish Mortar Bar Test – TI-B51	Prism	40x40x160mm ³	50°C	Samples immersed in a 1M NaOH solution	52 weeks	
Norwegian concrete prism test – NCPT – (RILEM AAR-10)	Prism	100×100×450mm ³	38°C	RH>95%	52 weeks	
Concrete Cylinder Test – CCT	Cylinder	∮100mm h=200mm	38°C, 50°C	RH>95%	15 weeks	
German Concrete Method – GCM	Prism Cube	100x100x450mm ³ 300x300x300mm ³	40°C	Samples storage in fog chamber	s 9 months	
Alkali-Wrapped Concrete Prism Test – AW- CPT – (RILEM AAR-13)	This procedure can be combined with any of the above methods			Samples wrapped with water-holding material with alkali hydroxide solution (same as concrete pore solution)		

Reliability?

Objective

 How to predict long term field performance of concrete, based on laboratory tests and current data?

CONVENTION

CONVENTION

Bibliometric analysis

Authorship connections / Collaborations

Citation patterns

Publication history

Leading researchers

Impact of a research topic

Trends

Preliminary results: field exposed blocks

Kingston outdoor exposure Treat Island cold water marine site exposure site

MANNVIT exposure site

SINTEF (left - Trondheim, Norway) and VDZ (right Düsseldorf, Germany)

COIN cubes on the LNEC exposure site in Lisbon (Portugal)

Preliminary Results: Evaluation procedures

Preliminary Results: Bibliometric Analysis

Laboratory methodologies

			AW-				
	CPT	ACPT	CPT	NCPT	AMBT	MCPT	CCT
CPT	2	_	-	-	-	-	-
ACPT	3	0	-	-	-	-	-
AW-							
CPT	2	1	0	-	-	-	-
NCPT	1	1	0	0	_	_	-
AMBT	6	2	0	1	3	_	-
MCPT	1	1	0	0	0	0	-
CCT	0	1	0	0	0	1	0

aci

CONCRETE

CONVENTION

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

_

_

_

Current Challenges

Discrepancies in the outcomes - Lack of clear thresholds for aggregate reactivity potential

NCRETE

ac

ML to be incorporated in the solution

CONVENTION

Action plan

Aggregate

Basic Information

Data Collection

Validated data structure

Action plan

Data Cleaning

- Not standardized data collection process
 - · Changes in technology over the years
 - Missing data

Data Exploration

• Descriptive analysis

(histogram, scatter plot, correlation)

Feature Engineering

- Feature selection
- Feature creation/aggregation

ML to be incorporated in the solution

Prediction purposes

- Random forest: feature importance
- Support vector machines (SVMs): effective for a lot of variables from lab tests.
- Neural networks: deep learning for complex data structures and relationships
- K-Nearest neighbors (KNN): similar lab results and use them to predict field outcomes
- Decision tree: decision making by cut-offs or criteria from lab data THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

References

- [1] B. Fournier and M.-A. Bérubé, "Alkali–aggregate reaction in concrete: a review of basic concepts and engineering implications," vol. 27, 2000.
- [2] P. J. Nixon and I. Sims, Eds., *RILEM Recommendations for the Prevention of Damage by Alkali-Aggregate Reactions in New Concrete Structures*, vol. 17. Dordrecht: Springer Netherlands, 2016. doi: 10.1007/978-94-017-7252-5.
- [3] R. N. Swamy, "Role and effectiveness of mineral admixtures in relation to alkali-silica reaction," in *The Alkali-Silica Reaction in Concrete*, 1st Edition., London: CRC Press, 1991, p. 288. [Online]. Available: https://doi.org/10.4324/9780203036631
- [4] M. Thomas, "The effect of supplementary cementing materials on alkali-silica reaction: A review," *Cem. Concr. Res.*, vol. 41, no. 12, pp. 1224–1231, Dec. 2011, doi: 10.1016/j.cemconres.2010.11.003.
- [5] D. J. De Souza, L. R. Antunes, and L. F. M. Sanchez, "The evaluation of Wood Ash as a potential preventive measure against alkali-silica reaction induced expansion and deterioration," *J. Clean. Prod.*, vol. 358, p. 131984, Jul. 2022, doi: 10.1016/j.jclepro.2022.131984.
- [6] J. Lindgård, Ö. Andiç-Çakır, I. Fernandes, T. F. Rønning, and M. D. A. Thomas, "Alkali–silica reactions (ASR): Literature review on parameters influencing laboratory performance testing," *Cem. Concr. Res.*, vol. 42, no. 2, pp. 223–243, Feb. 2012, doi: 10.1016/j.cemconres.2011.10.004.
- [7] J. Duchesne and M. A. Bérubé, "The effectiveness of supplementary cementing materials in suppressing expansion due to ASR: Another look at the reaction mechanisms part 2: Pore solution chemistry," *Cem. Concr. Res.*, vol. 24, no. 2, pp. 221–230, 1994, doi: 10.1016/0008-8846(94)90047-7.
- [8] L. F. M. Sanchez, T. Drimalas, B. Fournier, D. Mitchell, and J. Bastien, "Comprehensive damage assessment in concrete affected by different internal swelling reaction (ISR) mechanisms," *Cem. Concr. Res.*, vol. 107, pp. 284–303, May 2018, doi: 10.1016/j.cemconres.2018.02.017.
- [9] N. J. Scaglione and P. L. Piercey, "ACR and ASR of a Carbonate Coarse Aggregate in Missouri," in *Advances in Cement Analysis and Concrete Petrography*, D. Cong and D. Broton, Eds. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2016, pp. 65–88. doi: 10.1520/STP161320180009.
- [10] M. Alexander, Alkali-Aggregate Reaction and Structural Damage to Concrete: Engineering Assessment, Repair and Management. CRC Press, 2011. doi: 10.1201/b10773.

Thanks

aberg065@uottawa.ca

