

American Concrete Institute

Statistical Physics for Quasi-Brittle Fracture

Ariel Attias, Franz-Josef Ulm

Introduction

- Concrete is the most widely used material in the world
- Great mitigation potential of its environmental impact through:
 - a) Resilience.
 - b) GHG emissions.

• How to assess the performaces of a fracture method ?

- a) Fracture load/pattern predictions.
- b) Size-effect.

• Why come with **another** fracture method ?

The SGCMC model: From Finite Elements to Statistical Physics

- Fracture (spin) dynamics is governed by probability (semi-grand ensemble).
- Element fracture potential: the **ground-state energy** ϵ_0 .
- Basis for reduced units analysis (ϵ_0 ,R)

The SGCMC model: Energy Dissipation Regularization

- Fracture is a surface process $\neq \epsilon_0$ (volumetric)
- Regularization of the crack with a ϵ -rationalization C_{ϵ} ($\epsilon > R$)

Figure: Square mesh with existing crack

Figure: Square mesh with updated crack

A 4-pt bending beam: Fracture pattern

0.7

0.6

0.5

0.4

0.3

0.2

0.1

- $\epsilon_0^e = \int \frac{f_t^2}{E} d \Omega_e$
- **Tension-compression** • asymmetry.

Figure: Initial Fracture Likelihood

- Fracture micro-states respect the **Ergodicity** \bullet principle.
- Fracture analysis beyond average response. •

A 4-pt bending beam: Fracture Propagation & Phase transition

<u>Figure</u>: Critical load detection $\left(\frac{a_0}{H} = 0.2\right)$

• Fracture is a **first-order** phase transition (n_{occ} discontinuity).

• Heat of element rupture: $\frac{q_{\lambda}}{q_0}$

a) q_i = ∂U_i/∂N_i determined by statistics
b) in-situ measurement of fracture propagation (balance)

A 4-pt bending beam: Fracture load

 Predict fracture load in the experimental range of observed values.

- Span a large number of geometries.
- Visit different fracture micro-states for each $\frac{a_0}{H}$.

Figure: Fracture load predictions [2]

A 4-pt bending beam: Size-effect

Figure: Bazant's Type II SEL

- Reduced-Units does not allow to reproduce size-effect.
- Need for rescaling of the groundstate energy

A 4-pt bending beam: Size-effect (2)

Figure: Bazant's Type II SEL

Figure: Type II SEL

Iosipescu test: From Mode I fracture to Mode II fracture

Figure: losipescu beam geometry

- Compressive loads on the two central pads.
- Fracture mechanism varies as a function of the load eccentricity.
 - a) d large (Mode I) : opening
 - b) d small (Mode II): sliding

Inform stakeholders on the performances of a mix

- Key example for pavement and structural components (floor/wall) design.
- Informed choice through multiparameter modelling

Mater ial	ε _c	ν	$\frac{du_{rel}}{\frac{f_t \times f_c^{ref}}{f_c \times f_t^{ref}}}$	GHG (kg CO_2e/m^3)
Bench	0.1296×10^{-3}	0.17	1	355
HPC	0.1256×10^{-3}	0.15	0.7	400
Nanot ubes	0.1032×10^{-3}	0.15	1.35	368

Figure: Mix Performances

Inform stakeholders on the performances of a mix

realisations

Conclusions & Perspectives

• The SGCMC is a probabilistic fracture for (quasi)-brittle materials which:

- a) Enlarges fracture tracking by going beyond average responses.
- b) Predicts fracture loads for several geometries.
- c) Reproduces Type II size-effect.
- d) Describes complex fracture pattern

• The method can help the stakeholders make informed choices through the modelling of fragility curves for different mixes.

 Combining structural performances & GHG emissions can help optimize structures' design.

Thank you

For the most up-to-date information please visit the American Concrete Institute at: www.concrete.org

Questions: aattias@mit.edu

