

EXPERIMENTAL & NUMERICAL RETROFIT OF NON-DUCTILE RC SHEAR WALLS

Ann Albright Ph.D. Candidate at Virginia Polytechnic and State University

Project Motivation

- Many structures in CA which were designed pre-1970's.
- Pre-modern seismic codes.
- If a large earthquake occurs structures with non-ductile concrete shear walls are at risk of collapse.

Shear Wall Damage

• Diagonal Failure:

 Concrete Crushing/ Buckling of Bars:

2009 L'Aquilla (Dazio 2009)

2011 Christchurch (Kam et al. 2011)

2010 Chile (Maffei et al. 2014)

2011 Christchurch (Kam et al. 2011)

Shear Wall Background Research: 1950's-1960's in CA

Objectives of Research

- Investigate anticipated damage patterns for currently active buildings on the West Coast that have been designed before (pre-1970, nonductile) the advent of modern seismic design procedures.
- Study effectiveness of Fiber Reinforced Polymer and concrete retrofit methods for existing RC walls prone to shear failure.
- Further validate numerical models.
- Provide design recommendations for retrofitting techniques of shear walls.

CONCRETE

Testing Specimen 1

VIRGINIA TECH。

Reinforced Concrete Barbell Shear Wall Tested under quasi static reversed cyclic loading March 14th & 15th@ Murray Structures Lab, VT

Testing Specimen 1

Analysis with actual material properties

Max Prin Strain 2.000e-01 1.800e-01 1.600e-01 1.400e-01 1.200e-01 8.000e-02 6.000e-02 2.000e-02 0.000e+00

• Beam truss elements

CONVENTION

- 500 elements
- Nonlinear

Analysis with actual material properties

CONVENTION

10

Design of Specimen 2

ANCHORS (COUNT 57) CSS Wrap 100 HM 24" Wide Fibers in Horizontal Direction 12.00" TYP. SPLAY Anchors sandwiched between V-Wrap Anchors PLAN VIEW CONVENTION THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Testing of Specimen 2

Back Face - Unretrofitted

CONVENTIO

Actual Results of Specimen 2

At 2% Drift

Localized cracks in web

Truss Model Specimen 2

- Shell elements for FRP Overlay
- Adhesive interface elements used to account for the overlay debonding
- Spring elements for FRP anchors (elastic-brittle material)

Truss Model Results

CONVENTION

Comparison of Results

Specimen	Peak Load (kip)	Peak Drift (%)	Peak Strain in Vertical Rebar (in/in)	Peak Average Diagonal Strain (in/in)
1	154.3	1.5%	.0217	.008
2	165.7	2.5%	.055	.003

Drift Ratio (%)

CONVENTION

Future Work

Resources

- Deng, X., Koutromanos, I., Murcia-Delso, J., and Panagiotou, M. (2021). "Nonlinear truss models for strain-based seismic evaluation of planar RC walls," *Earthquake Engineering and Structural Dynamics* (open access), DOI: 10.1002/eqe.3480
- Deng, X., Murcia-Delso, J., Koutromanos, I., and Panagiotou, M. (2022). "Nonlinear truss modeling and strain-based evaluation of non-ductile RC walls, including the effect of lap-splice failures," *Proceedings of the 3rd European Conference on Earthquake Engineering and Seismology*, Bucharest, Romania.
- Panagiotou, M., et al. (2021). "Nonlinear Beam-Truss Model (BTM) for Seismic Performance Evaluation of Reinforced Concrete Wall Buildings," *Proceedings of the 2021 SEAOC Convention*, San Diego, CA.

Acknowledgements

- NIST
- Simpson Strong-Tie
- Professional Advisory Panel
- CRSI (especially Brett Lord)
- Commercial Metals Company (CMC Rebar)
- Headed Reinforcement Corp. West (HRC)
- Virginia Tech Structural Engineering Lab

Research Team

- Principal Investigators
 - I. Koutromanos, Virginia Tech (VT)
 - J. Murcia-Delso, UPC
- Graduate Students
 - Ann Albright, VT Mojtaba Aliasghar, VT Colson Brandetsas, VT Diego Andres Palacios Ortega, UPC Brandon Pulido, UPC

External Advisory Committee

Gabriel Acero (AECOM) Sergio Alcocer (UNAM) Scott Arnold (Fyfe) Aniket D. Borwankar (Simpson Strong-Tie) John Hooper (MKA) Insung Kim (Degenkolb) Marios Panagiotou (Nabih Youssef) Siamak Sattar (NIST)

Thank you!

Ann Albright, aalbright@vt.edu

Pre-Test Analysis

- Conducted before experimental test <u>Beam Truss Model</u>
- 500 elements
- V_{max}=135 kip (10% underestimation)

Pre-test Analysis of Specimen 2

CONVENTIO