

Strength Reduction Factors for ACI 318 Strut-and-Tie Method for Deep Beams

Victor Aguilar, Robert W. Barnes & Andrzej S. Nowak

Universidad de Concepción

Americar

American Concrete Institute

METE A. SOZEN AWARD FOR EXCELLENCE IN STRUCTURAL RESEARCH

Outline

Introduction

Reliability Strut-and-tie (STM) STM provisions in ACI 318

Reliability Analysis of Deep Beams

Conclusions

Strength Reduction Factors Recommendation

ACI STRUCTURAL JOURNAL

TECHNICAL PAPER

Title No. 119-S32

Strength Reduction Factors for ACI 318 Strut-and-Tie Method for Deep Beams

by Victor Aguilar, Robert W. Barnes, and Andrzej Nowak

The strut-and-tie approach has gained importance in reinforced concrete design practice in the United States in the last two decades. This method has proven suitable for designing shear-critical structural members where beam theory is not applicable. However, the strength reduction factors specified for the ACI 318 strut-and-tie method have not been calibrated based on the structural reliability approach. Therefore, the reliability of members designed according to these provisions is unknown. In this study, the reliability of deep beams designed using the strut-and-tie method according to ACI 318 building code requirements for structural concrete was determined. Statistical parameters employed for loads, material uncertainty, and fabrication uncertainty were based on published literature. The uncertainty in the analytical model was characterized based on available test results. The findings indicate that current design practice using the strut-and-tie method promotes the likelihood of a nonductile failure mode relative to a ductile failure mode. Inconsistencies in reliability with respect to concrete strength are highlighted. The following reliability-based strength reduction factors are suggested: $\phi = 0.65$ for struts and nodal zones and $\phi =$ 0.90 for ties.

Keywords: D-region; design strength; ductility; nodal zone; reinforced concrete; reliability; safety; shear; strut-and-tie model.

How do we deal with risk?

 ϕ : Resistance factors (strength reduction factors) are based on the uncertainty in resistance

 β_{T} : The combination of load and resistance factors should assure to reach a certain predefined probability of failure or reliability index (target reliability index)

Target Reliability Index

 \Box Acceptable minimum safety margin is selected in terms of target reliability index, β_T .

 $\square \beta_T = 3.5$ for previous code calibration for components (beams or girders) and strength limit states.

- □ β_T = 3.5 corresponds to a probability of failure of 1/4300. β_T = 3.0→1/740; β_T = 4.0→1/32,000.
- □ Greater values of β_{τ} can be selected to reduce probability of failure for less desirable failure modes, as is the case with shear in structural concrete.

Strut-and-tie

Complex stress field of a concrete structure is represented by an equivalent truss, with elements in compression (struts) and elements in tension (ties), and intersections are called nodes.

ACI 318-19 STM Provisions

Strut

 $F_{us} \leq \phi F_{ns}$

where, F_{us} : factored force in the strut F_{ns} : nominal strength of the strut

 $F_{un} \leq \phi F_{nn}$

where,

 F_{un} : factored force in the nodal zone F_{nn} : nominal strength of the nodal zone

$$F_{ut} \leq \phi F_{nt}$$

where, F_{ut} : factored force in the tie F_{nt} : nominal strength of the tie

ACI 318-19 in all cases $\phi = 0.75$ [AASHTO LRFD $\phi_{\text{compression}} = 0.70$ and $\phi_{\text{tension}} = 0.90$ or 1.0]

ACI 318-19 STM Provisions

□ Strut strength

Nodal strength

$$F_{nn} = f_{ce} A_{nz}$$

□ Tie strength

$$F_{nt} = A_{ts} f_{v}$$

Reinforced:

Unreinforced:

 $F_{ns} = f_{ce}A_{cs} + A_{s}f_{s}$

 $F_{ns} = f_{ce} A_{cs}$

where effective compressive strength:

 $f_{ce} = 0.85 \beta_c \beta_s f_c$

 β_s to account for the effect of tensile stresses and cracking reinforcement

where effective compressive strength:

$$f_{ce} = 0.85\beta_c\beta_n f_c$$

 β_n to account for the effect of anchoring ties in the node

 f'_c uncertainty is about 11–17% f_y uncertainty is about 2–4%

Objectives

□ Investigate the strut-and-tie provisions in ACI 318-19:

Reliability Likelihood of ductile failure

□ Current safety margin?

Reliability of individual components (struts, ties, nodes) Reliability of the member (deep beam system)

 \Box Select β_T and suggest ϕ

Deep Beam

Generic Deep Beam

- □ Statically determinate model
- □ Series system
- $\Box Component forces for design$ COV = 20%

Analysis Uncertainty

Park and Kuchma (2007)

- #214 tests on deep beams from 8 sources
- □ Predictions based on STM

Probabilistic Models for Reliability Analysis

		Item	λ	COV	Distributio	on Source	
		Compressive concrete strength					
Load models are same as in form	f _c ' = 3,000 psi	1.31	0.170				
calibration (Nowak and Szerszer	$f_{c}' = 4,000 \text{ psi}$	1.24	0.150				
\Box Dead $\lambda = 1.05$ COV = 0.10 (no	$f_{c}' = 5,000 \text{ psi}$	1.19	0.135				
$\Box \text{ Live } \lambda = 1.00 \text{ COV} = 0.18 \text{ (extreme I)}$		$f_c' = 6,000 \text{ psi}$	1.15	0.125		NT 1 1 1 1 1 2	
		$f_c' = 7,000 \text{ psi}$	1.13	0.115	Normal	Nowak et al. ⁴²	
	Analysis u	incertainty					
$\Box R = R_n MFP$	Normal strength concrete		1.	1.76 0.142			
	High strength concrete		1.31		0.145 Normal		This study
$\square M$ and F based on available data Mem		orces	1.00		0.200		
materials properties and fabricat	UII	# 7	1 14	0.030			
tolerances documented by Nowa	k et al.	# 8	1.13	0.025	Lognormal	Nowak et al. ⁴²	
(2012)		# 9	1.14	0.020			
()		# 10	1.13	0.020			
		# 11	1.13	0.020			
		# 14	1.14	0.020			
$\lambda = \frac{\bar{x}}{x_n} \qquad COV = \frac{\sigma_x}{\bar{x}}$		Fabrication uncertainty					
		Width cast-in- place beam	1.01	0.040	Normal	Ellingwood et al. ⁴⁹	
		Area of reinforcement	1.00	0.015		Nowak et al. ⁴²	
		Analysis uncertainty					
		Normal strength concrete	1.76	0.142			
		High strength concrete	1.31	0.145		This study	
				0.200			ICRETE 🦰
THE WORLD'S GATHERING	PLACE FO	R ADVANCING CONC	RE			CONVE	

Reliability of Individual Components

Reliability of individual components (does not include analysis variability)

□ System probability of failure (Series)

For series systems with positive correlation, the probability of failure of the system (P_F) must satisfy

$$\max\{P_i\} \le P_F \le 1 - \prod_{i=1}^n (1 - P_i)$$

Lower bound: fully correlated members, Upper bound: uncorrelated members

Assumptions

Strut and nodes fully correlated

Ties fully correlated

□ Strut & nodes uncorrelated with ties

Results Reliability Analysis

	Component	ϕ	β_i	$P(R_t < R_{s,nz})$	β_{sys}	
	Strut	0.75	3.0			
	Node	0.75	3.0	0	4.0	$=\beta_{T}$
	Tie	0.75	5.0			Ideal for shear limit state
	Strut	0.75	3.0			
	Node	0.75	3.0	1%	4.0	
	Tie	0.90	4.0			
Component reliability and system						
results for normal-strength concrete	Strut	0.75	3.0			
$f'_{1} \leq 6.000 \text{ psi}$	Node	0.75	3.0	6%	4.0	
	Tie	1.00	3.4			
100 million simulations	Strut	0.65	3.4			
	Node	0.65	3.4	3%	4.2	
	Tie	0.90	4.0			
	Strut	0.65	3.4			
	Node	0.65	3.4	18%	4.2	
	Tie	1.00	3.4		6	
THE WORLD'S GATHERING PLACE FOR AD	VANCING	CONC	RETE		С	ONVENTION

Results Reliability Analysis

 ϕ

 β_i

 $P(R_t < R_{s,nz})$

 β_{sys}

CONVENTI

Component

	Strut	0.75	3.3			
	Node Tie	e 0.75 0.75	3.3 5.0	0.3%	3.2	$\approx 3.0 < \beta_T = 3.5$
						, ,
	Strut	0.75	3.3			
	Node	0.75	3.3	70%	2.9	
	Tie	1.00	3.4			
Component reliability and system						
results for high-strength concrete	Strut	0.65	3.9			
f' > 6 000 nsi	Node	0.65	3.9	78%	3.4	$\approx 3.5 = \beta_{T}$
$T_{c} > 0,000 \text{ psr}$	Tie	0.90	4.0			For flexural limit
						state
100 million simulations	Strut	0.60	4.3			
	Node	0.60	4.3	58%	3.8	
	Tie	0.80	4.7			
	Strut	0.50	5.1			
	Node	0.50	5.1	93%	4.1	
	Tie	0.75	5.0		6	
						" 🗁 CONCRETE 🦰

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Conclusions

□ The current resistance factors for STM in ACI 318-19 promotes the likelihood of a nonductile failure mode relative to a ductile failure mode. ϕ factors for STM need attention.

- The level of conservatism of strength prediction with ACI 318-19 STM varies with the concrete compressive strength, which results in inconsistencies in the reliability of STM designs
 - □ Normal-strength concrete $\beta \approx 4.0$
 - □ High-strength concrete $\beta \approx 3.0$

□ Suggested strength reduction factors:

- $\Box \phi = 0.65$ for struts and nodes and $\phi = 0.90$ for ties
- Slightly increase the system reliability across all ranges of concrete strength
- Increase the relative probability of a ductile failure mode

Strength Reduction Factors for ACI 318 Strut-and-Tie Method for Deep Beams

Víctor Aguilar, Robert W. Barnes & Andrzej S. Nowak

Universidad de Concepción

AUBURN UNIVERSITY

American Concrete Institute

METE A. SOZEN AWARD FOR EXCELLENCE IN STRUCTURAL RESEARCH