

Evaluating Mechanical and Durability Performance of Recycled Plastic-rubber Compound Modified Mortars with/without Tire Steel Fiber-Reinforcement

Peifeng Su, Ph.D. Student¹, Jiaqing Wang, Assistant Professor², Qingli Dai, Ph.D., Professor¹ ¹Department of Civil and Environmental Engineering, Michigan Technological University ²Department of Civil Engineering, Nanjing Forest University

> 10/17/2021 ACI Virtual Concrete Convention

- Motivations and objectives
- Development of Plastic-rubber (PR) Compound Modified Mortars with/without Tire Steel Fiber-Reinforcement (PRM and PRSRM)
 - Mixture design of PRM and PRSRM
 - Mechanical strength of PRM and PRSRM
 - Effects of added steel fiber on the flexural-fracture mechanical properties
 - Shrinkage measurement of PRM and PRSRM
- Conclusions
- Acknowledgment

• Motivations and objectives

- Development of Plastic-rubber (PR) Compound Modified Mortars with/without Tire Steel Fiber-Reinforcement (PRM and PRSRM)
 - Mixture design of PRM and PRSRM
 - Mechanical strength of PRM and PRSRM
 - Effects of added steel fiber on the flexural-fracture mechanical properties
 - Shrinkage measurement of PRM and PRSRM
- Conclusions
- Acknowledgment

Motivations

- The landfilling is becoming unacceptable and costly due to limited available sites for waste disposal and its pollution to soil and ground water
- The application of concrete containing waste tire rubber and plastics is still limited due to reduced strength and low interface bonding
- The waste plastics and rubber can be manufactured to form higher stiffness plastic-rubber (PR) compound
- The waste tire fiber reinforcement could be used to improve the fracture and durability properties of compound modified mortar

http://www.wastetireoil.com/Pyrolysis_plant/recycling_plan t/waste_tire_recycling_plant_178.html

Objectives

Objective:

Development of Plastic-rubber (PR) Compound Modified Mortars PRM and Tire Steel Fiber-Reinforced Compound Modified Mortars (PRSRM)

- 1. Develop Plastic-rubber (PR) Compound Modified Mortars PRM and Tire Steel Fiber-Reinforced Compound Modified Mortars (PRSRM) based on the investigation of fresh performance, hardened property, and shrinkage resistance
- 2. Investigate fracture behaviors of PRM and PRSRM samples and the combined effects of PR compounds and steel fibers by flexural test on notched beam

• Motivations and objectives

- Development of Plastic-rubber (PR) Compound Modified Mortars with/without Tire Steel Fiber-Reinforcement (PRM and PRSRM)
 - Mixture design of PRM and PRSRM
 - Mechanical strength of PRM and PRSRM
 - Effects of added steel fiber on the flexural-fracture mechanical properties
 - Shrinkage measurement of PRM and PRSRM
- Conclusions
- Acknowledgment

PR compound particles

Ingredients:

- 60%: Thermoplastic polyolefin (PP and PE)
- 40%: #80mesh rubber from tires

Size:

About 2*3*4mm cylinders

Recycled steel fiber

Size range:

Length: 5-30mm Diameters: 0.1-0.4mm

Mechanical Properties of PR Compounds

				Properties (500 A D412/ASTM	Flexural Properties ASTM D790		
Material	Density (g/cm^3) ASTM D792	Hardness (Shore A) ASTM D2240	Tensile strength (MPa)	Elongation @ Break (%)	Tensile Modulus (MPa)	1% Secant Modulus (MPa)	Flexural Strength (MPa)
CRTPE-85	0.969	85	8.7	294	39	76	2.7

Materials preparation and mixture design (aci)

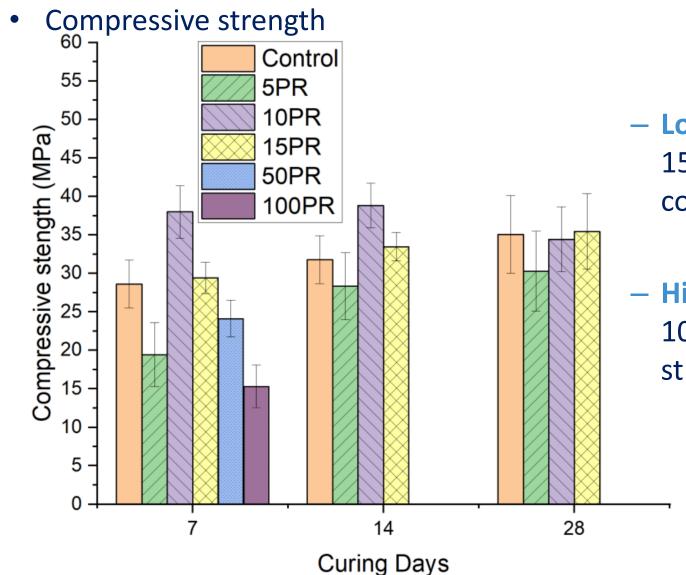
Three different PR compound volumes: 5%, 10%, and 15% (based on #8 sand volume percentage); One steel fiber volumes: 0,5%

Mixing procedures:

- 1. Dry mixing with all aggregates and rubber (if any): 0.5 min
- 2. Add the tap water and steel fiber (if any), and mixing:3 min
- 3. Rest for 3 min
- 4. Final mixing: 2 mins

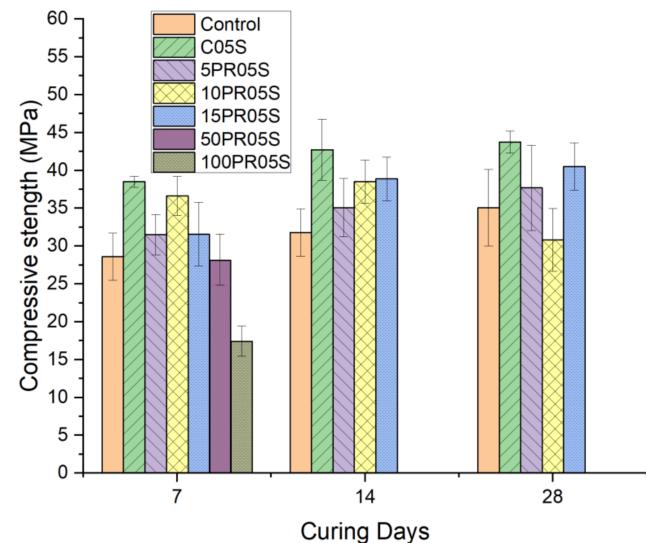
Sample types	Designed compound Content (vol. %)	Designed Fiber Content (vol. %)	Designed w/b	Water	Portland cement	#8	#16	#30	#50	#100	PR	Steel Fiber
C(without PR and fiber)	0.00	0.00	0.47	224.00	477.00	108.00	271.00	271.00	271.00	162.00	0.00	0.00
5PR (with 5% PR)	5.00	0.00	0.47	224.00	477.00	102.60	271.00	271.00	271.00	162.00	2.36	0.00
10PR (with 10% PR)	10.00	0.00	0.47	224.00	477.00	97.20	271.00	271.00	271.00	162.00	4.72	0.00
15PR (with 15% PR)	15.00	0.00	0.47	224.00	477.00	91.80	271.00	271.00	271.00	162.00	7.07	0.00
C05S(with 0.5% fiber only)	0.00	0.50	0.47	224.00	477.00	108.00	271.00	271.00	271.00	162.00	0.00	8.05
5PR05S (with 5% PR and 0.5% fiber)	5.00	0.50	0.47	224.00	477.00	102.60	271.00	271.00	271.00	162.00	2.36	8.05
10PR05S (with 10% PR and 0.5% fiber)	10.00	0.50	0.47	224.00	477.00	97.20	271.00	271.00	271.00	162.00	4.72	8.05
15PR05S (with 15% PR and 0.5% fiber)	15.00	0.50	0.47	224.00	477.00	91.80	271.00	271.00	271.00	162.00	7.07	8.05

Michigan

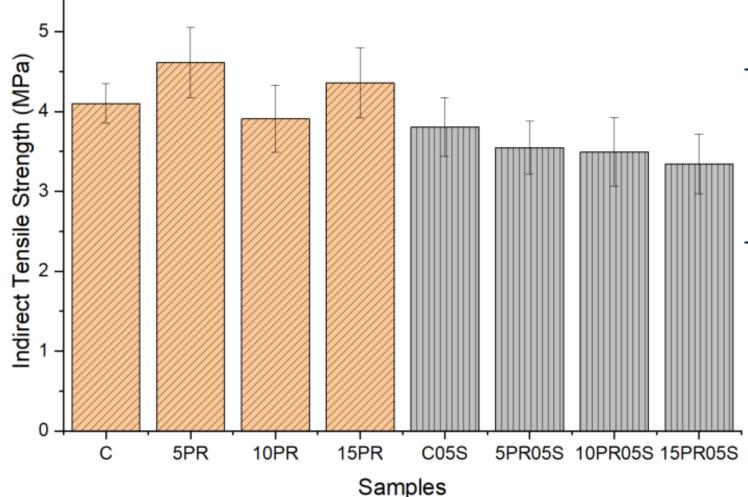

Technological

Mixture designs of mortar samples (Unit: kg/m³)

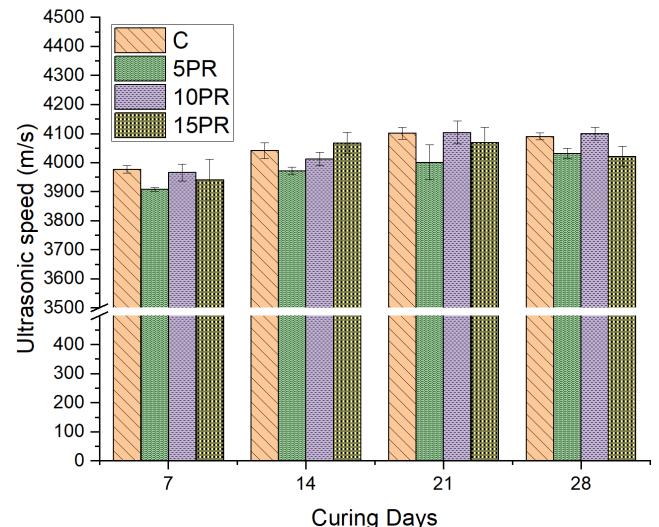
- Motivations and objectives
- Development of Plastic-rubber (PR) Compound Modified Mortars with/without Tire Steel Fiber-Reinforcement (PRM and PRSRM)
 - Mixture design of PRM and PRSRM
 - Mechanical strength of PRM and PRSRM
 - Effects of added steel fiber on the flexural-fracture mechanical properties
 - Shrinkage measurement of PRM and PRSRM
- Conclusions
- Acknowledgment



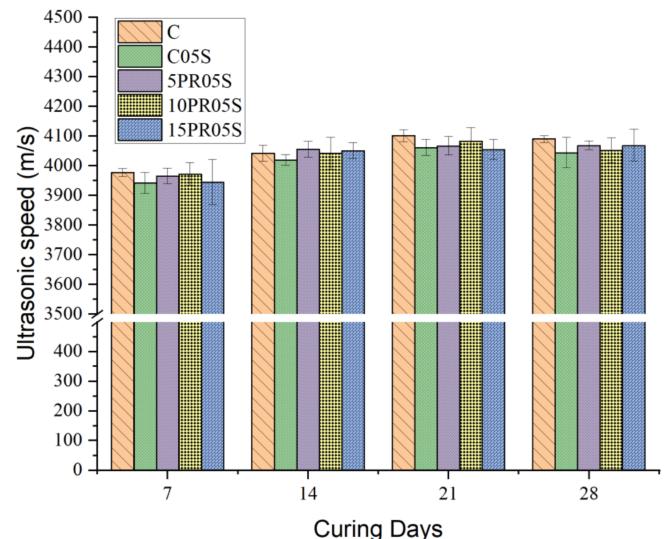
- Low PR replacement contents (5, 10, 15) can not affect much of PRM's compressive strength
- High PR replacement contents (50, 100) can reduce more compressive strength


• Compressive strength

- The added steel fiber can
 increase the compressive
 strength compared with
 Control group samples
- The replaced PR reduced compressive strength by comparing with recycled steel fiber reinforced control samples



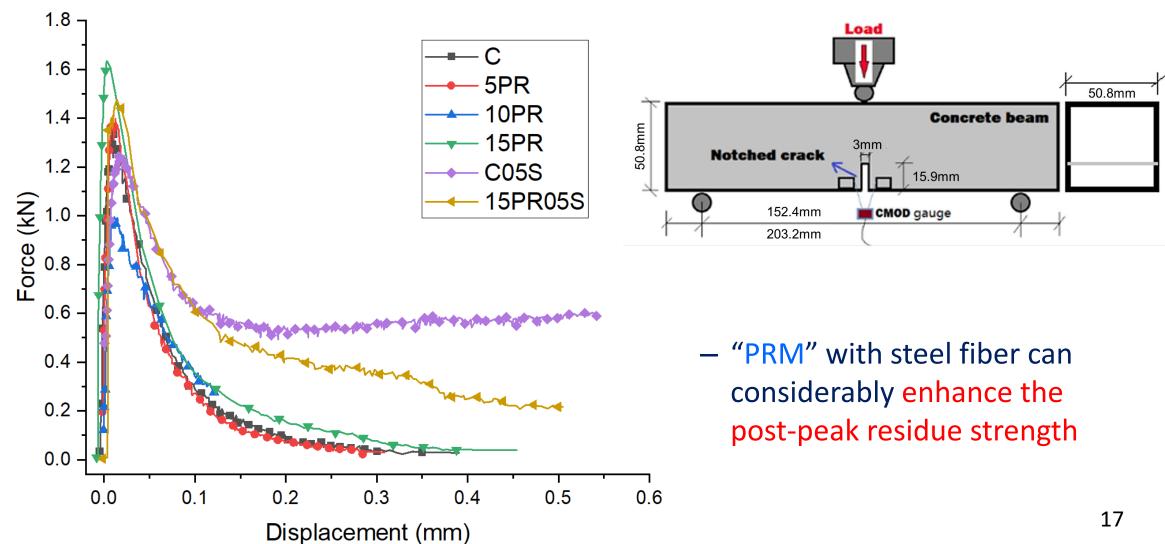
- The PRM samples (with 5 and 15 content) can increase the indirect tensile strength by comparing with Control samples.
- The added recycled steel fibers slight reduced the indirect tensile strength due to low interface bonding


• Ultrasonic Pulse Velocity (UPV)

- The 5PR and 15PR samples have lightly lower dynamic modulus compared with control samples
- The 10PR specimens showed the highest UPV at 28 Day, which is consistent with the compressive strength test results

• Ultrasonic Pulse Velocity (UPV)

 The added Steel fiber can alleviate the reduce of stiffness caused by PR, specially for the PRM sample groups (PR5 and PR15)



- Motivations and objectives
- Development of Plastic-rubber (PR) Compound Modified Mortars with/without Tire Steel Fiber-Reinforcement (PRM and PRSRM)
 - Mixture design of PRM and PRSRM
 - Mechanical strength of PRM and PRSRM
 - Effects of added steel fiber on the flexural-fracture mechanical properties
 - Shrinkage measurement of PRM and PRSRM
- Conclusions
- Acknowledgment

Effects of added steel fiber and different rubber contents on the fracture properties

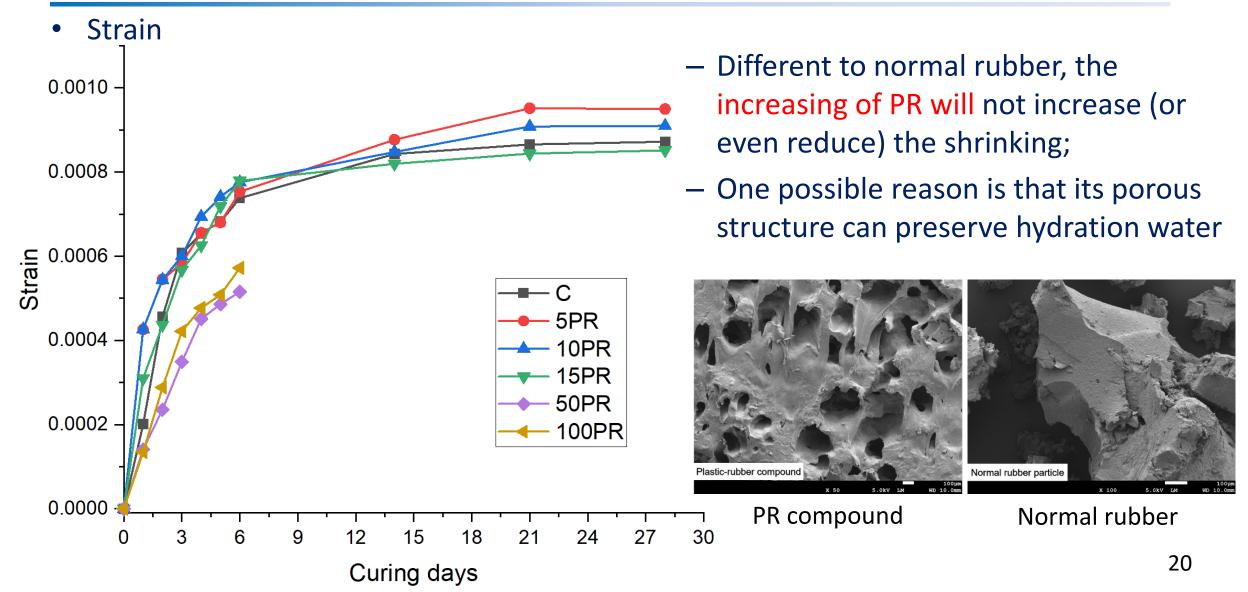


• Flexural-fracture test results of beam samples (50.8*50.8*203.2 mm, notch to depth ratio=0.3125)

Effects of added steel fiber and different rubber contents on the fracture properties

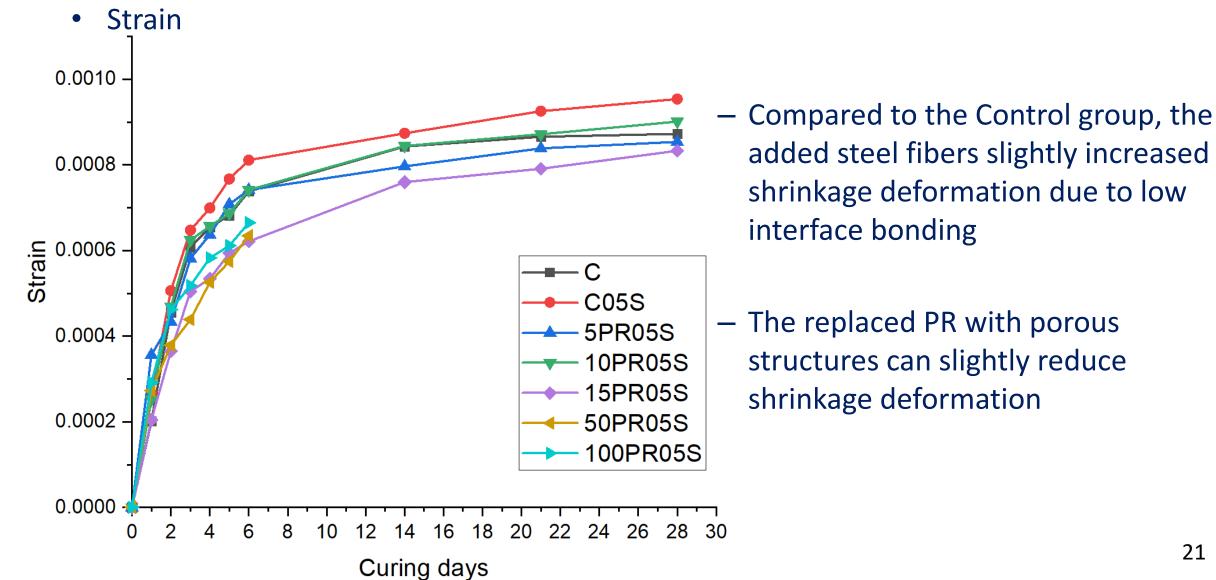
- The 15% content of PR resulted in an obvious improvement in the flexural strength

The addition of "PR" and "Steel Fiber" can considerably improve fracture energy 18


- Motivations and objectives
- Development of Plastic-rubber (PR) Compound Modified Mortars with/without Tire Steel Fiber-Reinforcement (PRM and PRSRM)
 - Mixture design of PRM and PRSRM
 - Mechanical strength of PRM and PRSRM
 - Effects of added steel fiber on the flexural-fracture mechanical properties

Shrinkage measurement of PRM and PRSRM

- Conclusions
- Acknowledgment


Shrinkage measurement

Shrinkage measurement

- Motivations and objectives
- Development of Plastic-rubber (PR) Compound Modified Mortars with/without Tire Steel Fiber-Reinforcement (PRM and PRSRM)
 - Mixture design of PRM and PRSRM
 - Mechanical strength of PRM and PRSRM
 - Effects of added steel fiber on the flexural-fracture mechanical properties
 - Shrinkage measurement of PRM and PRSRM
- Conclusions
- Acknowledgment

- Low PR replacement contents (5, 10, 15) can not affect much of PRM's compressive strength and added still fiber can slightly increase compressive strength;
- PRM samples (5,15 PR replacement contents) have higher indirect tensile strength while the still fiber slightly reduce the indirect tensile strength;
- The 5PR and 15PR PRM groups have lower dynamic modulus compared with control samples and steel fiber can alleviate this reduction effect;
- The replaced PR content has slightly increase fracture energy while the added steel fiber samples have better post-peak residue strength and thus significantly increase fracture energy;
- Adding of PR can slightly reduce the shrinking due to its porous structure that can preserve hydration water.

- This work is partially supported by the Michigan Department of
 - Environment, Great Lakes, and Energy (EGLE) under **Grant Number of** No. 20-1745.

Thank you for your attention!

