

Load Test of a Precast Concrete Tub Stadium Riser and Bond Testing of #20 Bar

Presented by

Jeremiah Fasl, PhD, PE Wiss, Janney, Elstner Associates, Inc.

The Project

- Expansion at a collegiate football stadium
- Mezzanine club level in endzone
 - Cantilevering precast concrete tub riser
 - Supported by steel truss

Concrete Tub Riser

Plan View

• Which direction controls?

$$\frac{l_{long}}{d} = \frac{28ft}{2ft} = 14 \qquad \frac{l_{tran}}{d} = \frac{2 \times 48in}{5.5in} = 17$$

Distress

Cracking in non-cantilever portion

• Consistent for bottom-most mezzanine concrete tub risers

Retrofit and Load Test

- Bending response
 - Longitudinal
 - Transverse cantilever
 - Torsional

Load Test per ACI 318-11

- Load cantilever portion
- Design live load = 100 psf
- Total test load = 150 psf
- Use industrial totes for loading
 - 30 inches of water
- Load
 - Four equal increments with 24-hr hold
 - Measure deflection with string potentiometer
 - Measure crack width

Instrumentation Locations

Deflections with Loading

Relative Deflection

Crack Width: West End

Description	A	В	
Prior to test	25	25	
Half Load	30	30	_
Full Load	35	35	4
Full Load + 24-hr hold	35	35	
Half Load	35	35	
No Load	30	30	
No load + 24-hr period	30	30	

Crack Width: East End

E	F	
15	35	
20	40	
20	45	4
25	45	
25	45	
25	40	
20	40	
	15 20 20 25 25 25	15 35 20 40 20 45 25 45 25 45 25 40

Acceptance Criteria

• Maximum deflection (Eq. 20-1)

$$-\Delta \le \frac{l_t^2}{20,000h} = \frac{(2 \times 48in)^2}{20,000(5.5in)} = 0.084in$$

• Residual deflection (Eq. 20-2)

$$-\Delta_r \leq \frac{\Delta_1}{4}$$

Criteria not satisfied

Location	Max
Blue	40
Yellow	0.2 "
Green	0.25

Location	Max/4	Final
Blue	0.05"	
Yellow	0.06"	0. 7"
Green	0.06"	

Discussion

- Dominated by cantilever bending
- Next steps
 - Retest?
 - Perform cyclic test?
 - Detailed analysis?
 - Retrofit?
- Other influences
 - − Temperature on \approx 20' cable

Corpus Christi Harbor Bridge Project

Main span: 1,661 ft (longest in US)

Confirm Development Length

- Develop yield strength of #20 (grade 75)
 - Diameter = 2.5''
 - Min. yield strength = 368 kips
- Supplied by Williams Form Engineering
 - All-thread bars
 - Threaded terminator
- Footings

Fabricated Beams

- 6'-0" deep, 4'-0" wide, 15'-6.5" long
- Development length: 4'-8"

Two Tests at Once

Instrumentation Plan

- Internal strain gages
 - Vibrating wire gages (#5 bar)
 - Foil strain gages (#20 bar)
- External strain gages
- Slip at ends of #20 bars
- Deflection
- Pressure

Acceptance Criteria

- Reach 75 ksi in #20 bars
 (2800 microstrain)
- Slip < 0.04''
- No evidence of bond failure

• 50' safety buffer

Strain in #20 Bars

Slip at Ends

Condition of Beam

Residual Strain (external): 1,000 με 0.04'' crack / 38'' gage = 1,052 με

Residual Strain (external): 1,200 $\mu\epsilon$ 0.05" crack / 38.125" gage = 1,300 $\mu\epsilon$

Discussion

- Met acceptance criteria
- Idealized behavior
- Important to measure right component
- Redundancy
 - Gages
 - Equipment

Questions?

