

Blast Response Limits for Load-Bearing Prestressed Concrete Panels

Thomas Mander, P.E.

October 14, 2018

Presentation Overview

- Research Significance
- Shock Tube Testing
- Panel Modeling
- Response Criteria for Analysis and Design
- Conclusions

Research Significance

- Structural response limits for load-bearing prestressed concrete wall panels have not previously been studied
- PCI funded a research project to fill data gaps
 - Perform full-scale shock tube tests
 - Develop SDOF methodology
 - Develop response limits

Non-Load-Bearing Response Limits

Prestressed limits: PDC TR-06-08

A f	Superficial		Mod	erate	Heavy		Hazardous	
$\omega_{\rm p} = \frac{A_{ps}}{A_{ps}} \frac{f_{ps}}{g'}$	Damage		Damage		Damage		Failure	
$\omega_{p} = \frac{1}{bd_{ps}} \frac{1}{f_{c}'}$	μ	θ	μ	θ	μ	θ	μ	θ
$\omega_{p} > 0.30$	0.7	-	0.8	-	0.9	-	1	-
$0.15 \le \omega_p \le 0.30$ or $0.15 \le \omega_p$ and no shear reinforcing	0.8	-	$\frac{0.25}{\omega_p}$	1°	$\frac{0.29}{\omega_p}$	1.5°	$\frac{0.33}{\omega_p}$	2°
$0.15 \le \omega_p$ with shear reinforcing	1	-	-	1°	-	2°	-	3°

Reinforced Concrete limits: PDC TR-06-08

	Superficial		Mod	loderate		Heavy		Hazardous	
Single reinforced slab or beam	Damage		Damage		Damage		Failure		
	μ	θ	μ	θ	μ	θ	μ	θ	
Flexure	1	-		2°		5°		10°	
Flexure-compression	1	-	-	2°	-	2°	-	2°	

Shock Tube Testing

Shock Tube Testing

Precast Wall

Axial Load Magnitude

- PDC TR-06-08 does not require axial loads to be considered for concrete members until they exceed $0.2f'_{dc}A_g$
 - Unconservative threshold

- Axial load magnitude of $0.05f'_cA_g$ and $0.10f'_cA_g$ using a nominal compression strength of 5000 psi
 - Capture majority of load-bearing wall cases

Solid Prestressed Panel

- 6-inch thick solid concrete
- Prestressed to 250 psi
- 6x6 D4xD4 WWF at mid-depth
- $f'_c = 7200$ psi at first test date

Solid Prestressed Panel

 Panels performed beyond current limits for non-loadbearing panels

Test loads ranging from: 4.4 psi, 78 psi-ms to 7.2 psi, 146 psi-ms

Test loads ranging from: 5.9 psi, 105 psi-ms to 7.3 psi, 135 psi-ms

Analytical Modeling

State-of-Practice

 Blast analysis of structures are commonly done on a component basis using SDOF methods

$$K_{LM}m\ddot{x} + c\dot{x} + kx = p(t)$$

Simplified elastic-plastic resistance functions are assumed

 Peak dynamic deflection from SDOF model is compared to published response limits to determine damage level

Analysis Approach

- Simplified elastic-plastic resistance functions provides no indication of damage from yielding or crushing throughout the response
- Moment-curvature model is used to quantify damage and correlate to qualitative criteria

Effect of Axial Load

$$\begin{split} M_{du} &= A_{ps} f_{ps} \left(d_p - \frac{a}{2} \right) + A_s f_{dy} \left(d - \frac{a}{2} \right) \\ &+ \frac{P}{2} (t - a) \end{split}$$

$$M_{P\Delta} = P\Delta$$

$$M_{effective} = M_{du} - M_{P\Delta}$$

Solid Prestressed Panel: 0.05f'cAg

 Axial load causes PS yielding (set as 0.011 using 2% offset strain) to occur simultaneously with concrete crushing

Including Axial Load Without P Δ

With $P\Delta$

Solid Prestressed Panel: 0.10f'cAg

 Axial load causes PS proportional limit (0.0085) to occur simultaneously with concrete at peak stress

Including Axial Load Without P∆

With $P\Delta$

SDOF Predictions vs. Measured

Response Criteria for SDOF Analysis and Design

Parametric Study

- Moment-curvature model provided good agreement with test results
- Analyze different sections to determine damage thresholds for blast design
 - $-\omega_{ps}$ = 0.15 to 0.25 (225 psi to 400 psi)
 - Span-to-depth (L/d) = 48 to 64

Parametric Study

(a) Compare M-Ø and EP Resistance Functions

(c) Calculate Equivalent Strain Energy

(b) Determine M-Ø Damage Thresholds

$$U_{M-\emptyset} = \int_{0}^{\theta_{limit}} R(\theta) d\theta$$

$$\theta_{equiv} = \frac{U_{M-\emptyset}}{R_u} + \frac{\theta_y}{2}$$

(d) Convert Calculated Support Rotation to EP

Damage Limit States

Component Damage	PDC TR-06-08 Component Consequence	BakerRisk Selected Threshold
Superficial	Component has no visible damage	Prestressing below proportional limit of 0.0085. Strains below this level will cause near elastic response, with cracks closing after event. Permanent displacement not visible.
Moderate	Component has some permanent deflection. It is generally repairable, if necessary, although replacement may be more economical and aesthetic	The smaller of prestressing at yield threshold of 0.011, which will cause permanent displacement, or concrete reaching its peak stress, f'c. Load-bearing panels with permanent displacement less than L/360.
Heavy	Component has not failed, but it has significant permanent deflections, causing it to be irreparable.	Concrete reaching a strain of 0.003, associated with concrete crushing. Loadbearing panels resistance dropping to $0.8R_u$.
Hazardous	Component has failed, and debris velocities range from insignificant to very significant.	Resistance dropping to $0.8R_u$, classified as failure point

Prestressed LB Panels

Prestressing Prop. Limit (Axial Load 0.05f'cAg)

Peak Concrete Stress (Axial Load 0.05f'cAg)

Prestressing Prop. Limit (Axial Load 0.10f'cAg)

Peak Concrete Stress (Axial Load 0.10f'cAg)

Prestressed LB Panels

Concrete at 0.003 Strain (Axial Load 0.10f'cAg)

Ductility Limit

- Ductility limit imposed to handle P-delta effects
- Based on resistance function dropping to 80% of ultimate resistance, and calculating equivalent elastic-plastic strain

$$\mu = \frac{\Delta_{max}}{\Delta_y}$$

$$\mu_H = \frac{0.3 M_{du}}{P_{max} \Delta_y} + \frac{20}{(L/d)}$$

Solid Prestressed Panel Criteria

PROPOSED CRITERIA

Wall Type	Superficial		Moderate		Heavy		Hazardous	
	μ	θ	μ	θ	μ	θ	μ	θ
Load-Bearing	1	1°	μ_{H}	1.5°	μ_{H}	2°	μ_{H}	2°

EXISTING PDC TR-06-08 NLB CRITERIA

	Superficial		Mod	Moderate		Heavy		rdous
$0.15 < \omega < 0.20 \text{ or}$	μ	θ	μ	θ	μ	θ	μ	θ
$0.15 \le \omega_p \le 0.30$ or $0.15 \le \omega_p$ and no shear reinforcing	0.8	1	$\frac{0.25}{\omega_p}$	1°	$\frac{0.29}{\omega_p}$	1.5°	$\frac{0.33}{\omega_p}$	2°

Conclusions

- Panels tested achieved peak support rotations in excess of published limits for NLB panels
- A moment-curvature model effectively predicted the panels response and was used for deducing panel damage limits with varying prestressing and span-todepth ratios
- Response limits for design were developed, which can be used with elastic-plastic resistance functions

Acknowledgements

- PCI advisory committee: Roger Becker, Greg Force, Suzanne Aultman, Phil Benshoof, Steven Brock, James Davidson, John Geringer, John Hoemann, Clay Naito and Pat O'Brien
- Coreslab Structures (Texas) Inc. and Tindall Corporation (Texas) for fabricating and supplying the prestressed wall specimens

Axial Load Application

- Static axial load applied concentrically on panels
 - Conservatively represents dead and live loads and dynamic roof reactions
 - Interior eccentricity
 counteracts direction of
 blast load benefits
 response

The Concrete Convention and Exposition

Axial Load Measurements

 Example axial force measurement (Test 13) on wall that did not fail

