Use of Heavy Equipment on Existing Bridges During Construction

Kyle Eyre, P.E., P.Eng, Kiewit Engineering Group Inc.
Agenda

• About Kiewit
• Risk Mitigation
• Design Criteria
• Loading
• Methods
• Design Best Practices
ABOUT KIEWIT

- The Kiewit Difference
 People
 Integrity
 Excellence
 Stewardship
RISK MITIGATION
RISK MITIGATION

• We Have Risk and we must take risk mitigation measures to keep the public and workers safe

“It is the Company’s policy to properly and systematically address the design and construction of temporary structures and other construction devices used in our operations. When the design is not provided by the owner, the liability assumed by the Company requires even greater attention to minimize the risk of failure. The design and construction of temporary structures and other construction devices requires thoughtful risk analysis and risk mitigation measures that begin with appropriate selection of designers, an independent review of the resultant design, and proper inspection during construction.

Districts are to follow the Design and Construction of Temporary Structures and Construction Devices Manual.”
RISK MITIGATION

• TSCD

Temporary Structures and Construction Devices – elements that are designed, developed, and constructed for the sole purpose of aiding in the construction of permanent works.
RISK MITIGATION

- CONCEPTUALIZE
- DESIGN
- DESIGN REVIEW
- INSPECT and VERIFY
RISK MITIGATION

Identify

- All temporary works associated with project execution

Analyze and Categorize

- Utilize the Temporary Works Risk Management Tables (found in Section 3)

Mitigate

- Select Designers
- Select Design Reviewers
- Identify any additional operational controls (non-design)
- Implement appropriate Inspection process

Document

- Produce matrix
- Highlight deviations from Manual
- Secure District Manager’s approval

Verify

- Monitor adherence to the plan as shown on matrix
- Track revisions on the matrix
- Secure all necessary approvals for revisions

LOW
MODERATE
HIGH
RISK MITIGATION

TABLE 3.18: PERMANENT STRUCTURES – TEMPORARY CONDITION DURING CONSTRUCTION / ERECTION

<table>
<thead>
<tr>
<th>Risk Level (See Note 1)</th>
<th>Attributes</th>
<th>Designer</th>
<th>Design Reviewer</th>
<th>Inspector(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>✓ Stresses and loading during construction of permanent works may impact structure differently from final loading conditions. ✓ Overhang brackets on deck pours need to have anchorages and overturning forces on girders reviewed.</td>
<td>Project Personnel to confirm with client that temporary conditions will not adversely affect structure Documentation required</td>
<td>Not required</td>
<td>No review of design process required in field. Erection checking covered elsewhere.</td>
</tr>
<tr>
<td>Moderate</td>
<td>✓ Structures where stability of individual members during construction needs to be reviewed, but overall structure stability is not at risk. ✓ Handling of long pre-cast or steel plate girders. Stability and external bracing require Design and Design Review. ✓ Erection of structural steel buildings, frames before final bracing is installed.</td>
<td>KIE</td>
<td>Not required</td>
<td>Experienced District Personnel to review construction designs for completeness and constructability</td>
</tr>
<tr>
<td>High</td>
<td>✓ Any structure that is unstable in a global manner until final erection is complete. ✓ Steel truss cantilever bridge erection ✓ Segmental pre-cast and CIP bridge structures ✓ Box girder bridges requiring cast in place deck for stability ✓ Long-span bridge girders or trusses ✓ Exposure to public in partially erected condition</td>
<td>Erection procedures designed by KIE</td>
<td>Consultant</td>
<td>Experienced District Personnel to review construction designs for completeness and constructability</td>
</tr>
</tbody>
</table>

[Note 1]: Additional notes or clarifications related to the risk level.
DESIGN CRITERIA

- ASCE 37-14
- ACI 318
- AASHTO LRFD Bridge Construction Spec.
- AASHTO Guide Design Spec. for Bridge Temp. Works
- Others: AREMA, Kiewit CEDC
LOADING

• DEAD LOADS
 Structure Self Wt.
 Wearing Surface
 Barriers
 Utilities

AASHTO 3.4.2.1: DC = 1.25
Evaluation of Strength III for max. force effect during construction
LOADING

• LIVE LOADS
 Equipment Self Wt.
 Dynamic Impact

AASHTO 3.4.2.1: LL = 1.50, IM = 1.33
Evaluation of Strength III for max. force effect during construction
LOADING

• EQUIPMENT
 - Excavators on Superstructure (If necessary)
 - Haul Trucks
 - Ground Based Excavators
 - Ground Based Cranes
LOADING

- **EQUIPMENT**
 - Excavators ~ 40 to 100+ kip (Larger yields more economical operation)
 - Compare to AASHTO Truck 72 kip (Greater need for engineering)
 - Consider both uniform track and concentrated point loading
METHODS

• DECK REMOVAL
 - CORE HOLES (INITIAL)
 - DECK SLOTTING (LEAVE ENOUGH FOR GIRDER STABILITY)
 - HYDRAULIC HAMMER ATTACHMENTS
 - DIAMOND BLADE SAWS (LIMITED)
 - DIAMOND WIRE SAWS (PREFERRED)
METHODS
METHODS
METHODS
METHODS

• STAGE SEQUENCES
 - EVALUATE EVERY STEP
 - REDUCED WIND EXPOSURE
 - EXAMPLE SHOWING A TYPICAL STAGE DEMO
METHODS
METHODS

Stage 1 – remove outer bike lane rail – Saw cut in ~10’ pieces – pick with Excavator through existing railing holes and load directly into truck
METHODS

Stage 2 – remove outer bike lane deck – Saw cut into ~10’ long pieces – pick with excavator and load directly into truck
METHODS

Stage 3 – remove inner Barrier Rail – Hoe ram excavator demo
METHODS

Stage 4 – remove Inner bike lane deck – saw cut into ~10 long pieces and pick with excavator and slab grab – load directly into truck
METHODS

Stage 5 – Use excavator W/ Shear to remove existing Girders and Stringers. Girders picked Full length (~42’) with crane from Trestle.
METHODS

Stage 6 – Wire Saw Existing Bent and top of concrete piles - pick with Crane from Trestle
Stage 7 – Shear Existing Piles (16” Conc.) with 345 excavator sitting on existing bridge. Piles picked with Crane from Work Trestle
METHODS
METHODS
DESIGN BEST PRACTICES

- ADD SUPPLEMENTAL SUPPORT WHEN NECESSARY
DESIGN BEST PRACTICES

- EVALUATING EA STAGE EFFICIENTLY
 - HAND CALCS
 - RISA 3D
 - MIDAS CIVIL
DESIGN BEST PRACTICES

• CONSIDER RISKS
 • HIGH RISK SAFETY
 • HIGH RISK COST
 • ADJACENT STRUCTURES
 • PLAN THE WORK, WORK THE PLAN
DESIGN BEST PRACTICES

• DESIGN TIPS
 • CONSERVATIVE LOAD FACTORS
 • CONSIDER SERVICEABILITY (IF APPLICABLE)
 • TYPICAL EXCAVATOR 80 KIP
DESIGN BEST PRACTICES

• DESIGN TIPS
 • CRANE MATS (IF NECESSARY)
 • LOAD DISTRIBUTION FRAMES (BYPASS DECK)
 • PROVIDE TEMP. FALSEWORK SHORING (IF NECESSARY)
QUESTIONS?
Thank you

For the most up-to-date information please visit the American Concrete Institute at:
www.concrete.org