LEARNING OUTCOMES

• Understand the design issues associated with tilt-up panels
• Recognize elements of the ACI 318 procedure for designing panel reinforcement
• Identify alternate methods of analysis for panel design
DISCLAIMER

Reference to specific computer programs or analysis tools is for illustrative purposes only and should not be construed as an endorsement by ACI or LJB.
AGENDA

• Review of design considerations
• Example calculation using ACI 318
• Finite element comparison
• Modeling of “non-standard” panels
DESIGN CONSIDERATIONS

• Panel loads
 – Axial force, often eccentric
 – Out-of-plane force
 – Secondary moment

• Simply-supported member model
DESIGN CONSIDERATIONS

\[\frac{P e}{2} + \frac{w l^2}{8} = P - \Delta \]

- Panel Loading
- Primary Moment
- Secondary Moment
- Combined Moment

Deflected Shape
DESIGN CONSIDERATIONS

• Iterative procedure
 – Apply moment
 – Determine deflection
 – Add P-Δ to moment and repeat until convergence

\[M_{max} = M_a + PΔ_{max} \]
DESIGN CONSIDERATIONS

• Moment magnification
 – Define stiffness based on cracked moment of inertia
 – Rewrite Δ in terms of moment and stiffness
 – Single solution with no iteration

\[
M_{max} = M_a \left\{ \frac{1}{1 - P/K_b} \right\} = M_a \delta_b
\]
DESIGN CONSIDERATIONS

• Cracked moment of inertia uses “effective” area of steel

\[A_{se} = A_s + \frac{P_u}{f_y} \left(\frac{h}{2d} \right) \]

• Efficient selection of panel reinforcement
DESIGN CONSIDERATIONS

\[\frac{P_u}{0.75K_b} = 1 \]
AGENDA

• Review of design considerations
• Example calculation using ACI 318
• Finite element comparison
• Modeling of “non-standard” panels
EXAMPLE CALCULATION

• Panel model
• ACI 318 slender wall method
EXAMPLE CALCULATION

- $P_{DL} = 7.2 \text{ k}$
- $P_{LL} = 7.5 \text{ k}$
- $e_{cc} = 3 \text{ inch}$
- $w = 27.2 \text{ psf}$
- $l_c = 31.0 \text{ ft} - 1.5 \text{ ft} = 29.5 \text{ ft}$
- Panel self weight above centerline = 19.0 k
EXAMPLE CALCULATION

• Typical load cases
 – Load Case 1: $1.2D + 1.6Lr + 0.5W$
 – Load Case 2: $1.2D + 0.5Lr + 1.0L + 1.0W$
 – Load Case 3: $0.9D + 1.0W$

• Assume 15-#4 bars each face ($A_s=3.00 \text{ in}^2$)
EXAMPLE CALCULATION

- $P_{ua} = 1.2(7.2 \text{ k}) + 1.6(7.5 \text{ k}) = 20.6 \text{ k}$
- $P_{um} = 20.6 \text{ k} + 1.2(19.0 \text{ k}) = 43.4 \text{ k}$
- $w_u = 0.5(15.0 \text{ ft})(27.2 \text{ psf}) = 204 \text{ plf} = 0.204 \text{ klf}$
- $\frac{P_{um}}{A_g} = \frac{43.4 \text{ k}(1000 \text{ lb/k})}{6.25 \text{ in.}(15.0 \text{ ft})(12 \text{ in./ft})}$
 $= 38.6 \text{ psi} < 0.06f_c' = 240 \text{ psi}$
EXAMPLE CALCULATION

- \[A_{se} = A_s + \frac{P_{um}}{f_y} \left(\frac{h}{2d} \right) = 3.0 \text{ in.}^2 + \frac{43.4 \text{ k}}{60 \text{ ksi}} \left(\frac{6.25 \text{ in.}}{2(5.0 \text{ in.})} \right) = 3.45 \text{ in.}^2 \]

- \[a = \frac{A_{se} f_y}{0.85 f'_c b} = \frac{3.45 \text{ in.}^2 (60 \text{ ksi})}{0.85 (4 \text{ ksi})(15.0 \text{ ft})(12 \text{ in./ft})} = 0.338 \text{ in.} \]

- \[c = \frac{a}{0.85} = \frac{0.338}{0.85} = 0.398 \text{ in.} \]

\[\frac{c}{d} = 0.080 < 0.375 \therefore \text{tension-controlled (refer to R9.3.2.2)} \]
EXAMPLE CALCULATION

\[I_{cr} = \frac{E_s}{E_c} A_{se} (d - c)^2 + \frac{w c^3}{3} = 8.044(3.45)(5.0 - 0.398)^2 + \]
\[\frac{(15.0 \text{ ft})(12 \text{ in./ft})(0.398)^3}{3} = 592 \text{ in.}^4 \]

Where \(l_w \) is the width of the panel (b)

\[\phi M_n = \phi A_{se} f_y \left(d - \frac{a}{2} \right) = 0.9(3.45)(60) \left(5.0 - \frac{0.338}{2} \right) = 75.1 \text{ k-ft} \]

\[K_b = \frac{48 E_c I_{cr}}{5^2 c} = \frac{48(3605 \text{ ksi})(592 \text{ in.}^4)}{5[29.5 \text{ ft}(12 \text{ in./ft})]^2} = 163 \text{ k} \]
EXAMPLE CALCULATION

\[M_{ua} = \frac{w_u}{8} + \frac{P_{ua} e_{cc}}{2} = \frac{0.204 \text{k} \text{lf}(29.5 \text{ ft})^2}{8} + \frac{20.6 \text{k}(3 \text{ in.})}{2(12 \text{ in.}/\text{ft})} = 24.8 \text{ ft-k} \]

\[M_u = \frac{M_{ua}}{1 - \frac{P_{um}}{0.75K_b}} = \frac{24.8 \text{ ft-k}}{1 - \frac{43.4 \text{k}}{0.75(163 \text{k})}} = 38.4 \text{ ft-k} < \phi M_n \]

\[\Delta_u = \frac{M_u}{0.75K_b} = \frac{38.4 \text{ ft-k}(12 \text{ in./ft})}{0.75(163 \text{k})} = 3.76 \text{ in.} \]
EXAMPLE CALCULATION

• Panel model
• ACI 318 slender wall method
 – 10-#4 EF left leg
 – 11-#4 EF right leg
AGENDA

• Review of design considerations
• Example calculation using ACI 318
• Finite element comparison
• Modeling of “non-standard” panels
FINITE ELEMENT COMPARISON

• ACI 318 slender wall method
 – 15-#4 EF

• Finite element model
FINITE ELEMENT COMPARISON

- 14-#4 each face
FINITE ELEMENT COMPARISON

• ACI 318 slender wall method
 – 10-#4 EF left leg
 – 11-#4 EF right leg

• Finite element method
FINITE ELEMENT COMPARISON

• 9-#4 EF left leg
• 10-#4 EF right leg
• Higher reinforcement concentration at corner of opening
FINITE ELEMENT COMPARISON

- Two foot strip alternate
- 9-#4 each face, each side
AGENDA

- Review of design considerations
- Example calculation using ACI 318
- Finite element comparison
- Modeling of “non-standard” panels
“Non-standard” panels

- Canopy load
- Isolated foundation support
- Screen wall
- Multi-story panels
CANOPY

Concentrated laterals load

R₁

R₂

W

W

Load diagram

Moment diagram

Deflection

W/2

H

W/2

H
CANOPY

Concentrated laterals load

- Conservatively add to applied moment

\[M_{ua} = \frac{w_u \ell_c^2}{8} + \frac{P_{ua} e_c}{2} + \frac{H_u ba}{\ell_c} \]

- \(P-\Delta \) includes vertical load component from canopy, too

\[R = \frac{6'-0'' P_{\text{canopy}}}{2(29'-6'')} \]

\[H = \frac{6'-0'' P_{\text{canopy}}}{2(6'-0'')} \]
CANOPY

Concentrated laterals load

16-#4 VERTICAL EACH FACE

22-#4 HORIZONTAL EACH FACE

TRIM BARS AS REQ’D BY ANALYSIS (TYP.)
ISOLATED FOUNDATION SUPPORT

Concentrated vertical load

Design strip

Critical cross section

Joist load

bd
ISOLATED FOUNDATION SUPPORT

Concentrated vertical load

- Large axial load at panel corners
- Similar to girder load, only no eccentricity
ISOLATED FOUNDATION SUPPORT

Concentrated vertical load

22 #4 HORIZONTAL EACH FACE

7’-4½” 5’-3” 7’-4½”

12 #4 VERT. E.F. 12 #4 VERT. E.F.

3 #4 VERT. E.F.

TRIM BARS AS REQ’D BY ANALYSIS (TYP.)
SCREEN WALL

Cantilevered panel

\[\Delta_{\text{max}} \]

\[\Delta \]

\[\frac{\Delta}{3} \]

\[W \]

\[W_c \]

\[\ell_c \]

\[M \]

Fixed base
SCREEN WALL

Cantilevered panel

• Moment at the support of a cantilevered span of height a is exactly the same as the mid-height moment of a simply supported span, l_c, if $2a = l_c$

\[
M_{ua} = \frac{w_u a^2}{2} = \frac{w_u \left(\frac{l_c}{2}\right)^2}{2} = \frac{w_u l_c^2}{8}
\]
SIX-Story Office

Temporary condition
• Support at foundation and brace attachment
• Construction-period wind load

Final condition
• Large axial load
• Positive and negative moment regions
SIX-_STORY OFFICE

• Axial load due to
 • Panel self-weight
 • Gravity loads of floors and roof
 • Load from overturning

• Moments due to
 • Out-of-plane
 • In-plane (shear acting at height)
SIX-Story Office

- Column with bi-axial moment analysis
- Alternates
 - Finite element model
 - Frame model
QUESTIONS?
FOR MORE INFORMATION

Jeff Griffin, Ph.D., P.E., P.M.P.

- Jgriffin@LJBinc.com
- (937) 259-5182
- LJBinc.com
- @LJBinc