Low Shrinkage Fiber-Reinforced Concrete for Improved Crack Control and Durability

Amir Bonakdar, Ph.D., P.E.
Business Development Manager, Western Region
The Euclid Chemical Company
Orange County, CA
Concrete is cracked by ...

- Low strength from improper curing
- Low strength from excess water
- Shrinkage cracking
- Freeze thaw cycles
- Chloride attack
- Alkali silica reaction
- Sulfate attack
- Acid attack
- Carbonation
- Fatigue and overloading (least)
Improving durability of concrete

- Making the concrete denser and less permeable
 - Lower w/c, use SCM, proper gradation, curing …

- Minimizing cracking potential
 - …low shrinkage concrete

- Controlling the cracks / crack widths
 - … fiber reinforcement
Concrete shrinkage

Typical Concrete Drying Shrinkage is 0.05% = 5/8” in 100’

Without restraint

But there is restraint……..

which usually = cracks (or planned joints)
Minimizing Shrinkage

Approaches to minimize cracking and curling due to shrinkage

1. Mix design approach
2. Shrinkage reducing admixtures
3. Shrinkage compensation

Less joints and less cracking
Water in concrete

EXCESS WATER IN ONE CUBIC YARD OF CONCRETE WITH 500 POUNDS OF CEMENT

<table>
<thead>
<tr>
<th>Water/Cement Ratio</th>
<th>Pounds of Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>.25</td>
<td>1</td>
</tr>
<tr>
<td>.30</td>
<td>2</td>
</tr>
<tr>
<td>.35</td>
<td>3</td>
</tr>
<tr>
<td>.40</td>
<td>4</td>
</tr>
<tr>
<td>.45</td>
<td>5</td>
</tr>
<tr>
<td>.50</td>
<td>6</td>
</tr>
<tr>
<td>.55</td>
<td>7</td>
</tr>
<tr>
<td>.60</td>
<td>8</td>
</tr>
<tr>
<td>.65</td>
<td>9</td>
</tr>
<tr>
<td>.70</td>
<td>10</td>
</tr>
<tr>
<td>.75</td>
<td>11</td>
</tr>
</tbody>
</table>

EXTRA CUBIC FEET OF WATER
Water is a precious natural resource. Superplasticizers lower the water usage by 12 to 40%.

Easier to place and higher strength.
MORE AND LARGER COARSE AGGREGATES

MEANS: LESS SURFACE AREA
AND LESS SPACE TO FILL

WHICH MEANS LESS PASTE
WHICH MEANS LESS CEMENT
WHICH MEANS LESS WATER
WHICH MEANS LESS EXCESS WATER
WHICH MEANS LESS SHRINKAGE
WHICH MEANS LESS CRACKING & CURLING
Theories of Shrinkage

- ACI 223 graphic
- curves dependent on many factors
- no influence from fibers
- importance of curing illustrated
- mix design can influence
- testing diligence is very important
Summary of Mix design goals

• High quality paste but not too much

• Maximize well graded coarse aggregates

• Enough water for hydration and finishing; use plasticizers

• Use SRA / SCA to lower the concrete shrinkage
Fiber reinforcement

- Fibers are used in concrete for the same reason that straws were used in mud bricks thousands of years ago: **post-crack strength**.

- Structural fibers provide additional tensile and flexural capacity.
Why not mesh or bars?

- If placed too low, it doesn’t work!
- If placed too high, it will be exposed!
- Always corrosion issue (deicing salts)!

[Image of concrete surface with a measurement tape and labeled area showing 'Finished surface']

[Image of a bridge with people walking]
Types of Fibers

- **Synthetic microfibers**: “secondary” reinforcement; shorter and finer strands, plastic shrinkage crack control only. They can be monofilament or fibrillated (0.5-1.5 pcy)

- **Synthetic macrofibers**: longer and coarser strands, shrinkage crack control and limited structural applications. Dosage rates should be calculated by engineering requirements and equations (3-20 pcy)

- **Steel fibers**: longer and coarser pieces, extended structural applications. Dosage rates should be calculated by engineering requirements and equations (15-100 pcy)
Testing FRC

Designation: C1609/C1609M – 12

Standard Test Method for
Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading)\(^1\)

\[R_{e3} = \frac{f_{e3}}{f_r} \]
Effect of Fiber Dosage

ASTM C1609 Representative Curves
4000/600 psi Mix Design

<table>
<thead>
<tr>
<th>Fiber Dosage</th>
<th>f_r (psi)</th>
<th>f_{e3} (psi)</th>
<th>R_{e3} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 pcy</td>
<td>597±43</td>
<td>133±9</td>
<td>22±3</td>
</tr>
<tr>
<td>5 py</td>
<td>669±9</td>
<td>209±15</td>
<td>31±2</td>
</tr>
<tr>
<td>7.5 pcy</td>
<td>651±25</td>
<td>293±29</td>
<td>45±4</td>
</tr>
<tr>
<td>10 pcy</td>
<td>662±8</td>
<td>372±39</td>
<td>56±6</td>
</tr>
</tbody>
</table>
FRC benefits

During the construction
- Reduced labor and costs
- Reduced construction time
- Increased safety
- Potential reduction in thickness
- Added value for RM

After the construction (in service)
- Three dimensional reinforcement
- Shorter and thinner cracks (in any)
- Less spalling and chipping
- Increase in long-term durability
- Lower maintenance costs
Salmon River Jeddore Bridge repair
Nova Scotia, Canada

3” thick topping
(high dosage synthetic macrofiber)
Mud Creek Bridge, Iowa.
122 feet length, 47 feet largest span, 30 feet width.

1.5” overlay with UHPC (high strength, high dosage steel fiber, SCC mix.)
Brand new bride deck without fibers or low shrinkage concrete
ABC’s of CRACK-Less Bridge Decks

With Applications in

ACCELERATED

BRIDGE CONSTRUCTION

Sonny Fereira, PE California Department of Transportation
March 21, 2014
Bridge Contractors/ Caltrans Liaison Committee Meeting
Formula for the CRACK-Less Bridge Deck

A. Shrinkage Reducing Admixture*
B. Water Reducing Admixture*
C. Fibers*

*add to concrete mix
The Current Cost Of Doing Business v. CRACK-Less Deck

$50 MILLION TO SEAL CRACKS

$2 MILLION FOR CRACK-Less DECKS
Desert Center, CA
1 lb/yd3 micro and 3 lb/yd3 macro fibers plus $\frac{3}{4}$ gal SRA
Thank you for your time and interest today!

Amir Bonakdar, Ph.D., P.E.
The Euclid Chemical Company
abonakdar@euclidchemical.com
Phone: 480-246-0917
www.euclidchemical.com