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Introduction

= Transfer Level Diaphragms experience large demands and
complex behavior

= Need for comprehensive approach to analyze demands and design
diaphragm components in Performance Based Design

= Various modeling and design approaches used in engineering
practice

= Objectives

= Investigate sensitivity to modeling configuration (Elastic vs. Inelastic)
and effective shear stiffness

= Guidance on use of simplified analysis models to determine demands



Building Description

= 38 - Story Residential building w/ 7 story podium

= Concrete corewall used for main Lateral Force Resisting System
(LRFS)

= Designed using Performance Based Design Methodology per
LATBSDC Guidelines
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Perform 3D Model

Model Elements

s RC core: Nonlinear shear
wall

= Podium wall: Nonlinear
shear wall

= Basement wall: Elastic shell
= Flexible diaphragms: Elastic

shell RC Core 55

= Transfer level: Elastic shell
or Nonlinear general wall
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Typical Tower Level and Transfer
Level

= Tower Level

= Flexible Diaphragm

= Fine Mesh with distributed mass
= Transfer Level

= Semi-Rigid

= Fine Mesh
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Modeling Parameters

= Elastic Shell Element
= Linear Elastic Element used for diaphragms

= In-plane behavior based on membrane shell, out-of-plane based on elastic
beam

= General Wall Element
= Nonlinear Fiber Element typically used to model walls

= Can Capture vertical axial/bending, horizontal axial/bending, and shear
behavior
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Typical Diaphragm
Demands
L



Typical Demands

= Demands used in typical engineering design
= Drag Force
= Shear Force

= Chord Force

= Investigate sensitivity of demands to model configuration and
effective shear stiffness



Slab Shear Demands
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Shear Stress

Use of general wall element reports higher forces
Effective shear stiffness show varying trends
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Drag Force — Compression
Demands

I

= General Wall reports higher forces for tension
= Elastic shell reports higher forces for compression

= Elastic and general wall approximately the same for areas that
don’t experience force transfer
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Chord Force Demands

I

= Different trends between positive and negative moments
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Comparison of Perform 3D
vs. Simplified Calculation
Methods



Comparison of Perform 3D vs.
Simplified methods

= Compare Perform 3D forces with forces from using Beam analogy

= Use forces from ASCE7 ELF and floor acceleration response from
FE analysis

= Investigate effect of including torsion into S|mpI|f|ed method
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Force Diagrams with
Translation Only



Tower Level: East-West Direction

= Beam Analogy underestimates forces from FE analysis
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Transfer Level: East-West
Direction

= Shear Forces overestimated, bending moment
underestimated
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Force Diagrams with
Translation and Rotation



Tower Level: East-West Direction

Addition of rotational acceleration closed gap between simplified
method and FE analysis

I
H - -
LT
.
—— =l R
=t L
[ I

o |

—

Shear Force (kip

Shear Force

\ ‘ \ ‘ \ ‘ \ ‘ \
P3D Section Cut
8000 — P3D Accel Response [
4000 — —
: %@%
-4000 — —
-8000 — —
| |
0 40 80

Location (ft)

Bending Moment (ft-kip)

Bending Moment

\ ‘ \ ‘ \ ‘ \ ‘ \ ‘ \
P3D Section Cut
100000 —| FaD Acce Resp -
0 %%
-100000 — —
| |
0 40 80

Location (ft)



Transfer Level: East-West
Direction

= Addition of rotational acceleration had small effect
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Summary and Conclusions

= Sensitivity of demands to modeling formulation are inconsistent.

= Comparison between general wall and elastic shell elements as well as
shear stiffness sensitivity dependent on cut location and type of force
extracted.

= Beam analogy for tower level unable to estimate Perform 3D
forces
= Forces underestimated with only translational response considered

= Inclusion of rotational response closes gap between envelopes, slightly
overestimating FE forces

= Hand calculations for transfer level shear tend to overestimate
while bending moment is underestimated with translation only
= Inclusion or rotational response has little to no effect on the envelopes



