Design and Modeling Issues Related to Diaphragms of Tall Buildings

Gian Carlo Piatos
Graduate Student
University of California, Los Angeles

John Wallace
Professor
University of California, Los Angeles

Kristijan Kolozvari
Assistant Professor
California State University, Fullerton
Introduction

- Transfer Level Diaphragms experience large demands and complex behavior
- Need for comprehensive approach to analyze demands and design diaphragm components in Performance Based Design
- Various modeling and design approaches used in engineering practice

Objectives
- Investigate sensitivity to modeling configuration (Elastic vs. Inelastic) and effective shear stiffness
- Guidance on use of simplified analysis models to determine demands
Building Description

- 38 – Story Residential building w/ 7 story podium
- Concrete corewall used for main Lateral Force Resisting System (LRFS)
- Designed using Performance Based Design Methodology per LATBSDC Guidelines
Perform 3D Model

Model Elements

- RC core: Nonlinear shear wall
- Podium wall: Nonlinear shear wall
- Basement wall: Elastic shell
- Flexible diaphragms: Elastic shell
- Transfer level: Elastic shell or Nonlinear general wall
Typical Tower Level and Transfer Level

- Tower Level
 - Flexible Diaphragm
 - Fine Mesh with distributed mass

- Transfer Level
 - Semi-Rigid
 - Fine Mesh
Modeling Parameters

- **Elastic Shell Element**
 - Linear Elastic Element used for diaphragms
 - In-plane behavior based on membrane shell, out-of-plane based on elastic beam

- **General Wall Element**
 - Nonlinear Fiber Element typically used to model walls
 - Can Capture vertical axial/bending, horizontal axial/bending, and shear behavior
Typical Diaphragm Demands
Typical Demands

- Demands used in typical engineering design
 - Drag Force
 - Shear Force
 - Chord Force

- Investigate sensitivity of demands to model configuration and effective shear stiffness
Slab Shear Demands

- Use of general wall element reports higher forces
- Effective shear stiffness show varying trends
Drag Force – Compression Demands

- General Wall reports higher forces for tension
- Elastic shell reports higher forces for compression
- Elastic and general wall approximately the same for areas that don’t experience force transfer
Chord Force Demands

- Different trends between positive and negative moments
Comparison of Perform 3D vs. Simplified Calculation Methods
Comparison of Perform 3D vs. Simplified methods

- Compare Perform 3D forces with forces from using Beam analogy
- Use forces from ASCE7 ELF and floor acceleration response from FE analysis
- Investigate effect of including torsion into simplified method
Force Diagrams with Translation Only
Tower Level: East-West Direction

- Beam Analogy underestimates forces from FE analysis
Transfer Level: East-West Direction

- Shear Forces overestimated, bending moment underestimated
Force Diagrams with Translation and Rotation
Tower Level: East-West Direction

- Addition of rotational acceleration closed gap between simplified method and FE analysis

![Graphs showing Shear Force and Bending Moment](image)
Addition of rotational acceleration had small effect
Summary and Conclusions

- Sensitivity of demands to modeling formulation are inconsistent.
 - Comparison between general wall and elastic shell elements as well as shear stiffness sensitivity dependent on cut location and type of force extracted.

- Beam analogy for tower level unable to estimate Perform 3D forces
 - Forces underestimated with only translational response considered
 - Inclusion of rotational response closes gap between envelopes, slightly overestimating FE forces

- Hand calculations for transfer level shear tend to overestimate while bending moment is underestimated with translation only
 - Inclusion or rotational response has little to no effect on the envelopes