

Performance Specification Compliance for Design-Build and P3 Projects

Paul G. Tourney, P.E. and Neal S. Berke, Ph.D., FACI Ranjani Vijayakumar, EIT and Mark Dixon, EIT Tourney Consulting Group, LLC Kalamazoo, MI

Overview

- Performance specifications are replacing descriptive specifications in large projects with service lives > 75 years
- In design-build and P3 Projects the ultimate owner has the structure turned over to them at some point typically > 25 years
- The design-build team maintains the structure in good condition
 - Protects the owner
 - Incentive to design-build team to use performance specifications
- Performance specifications allow the team to:
 - Build the structure at the lowest cost that meets service life requirements
 - Differentiate the team through innovative use of existing technologies
 - Demonstrate performance with modeling
- Firm specializing in concrete durability and corrosion is a key member of the design-build team

Today's Presentation

- Short review of service life guidelines and available modeling programs
- Examples from the design-build and owner's perspective on large bridges
 - Tappan Zee Bridge
 - Kosciuszko Bridge
 - NBSL

Common Service Life Issues

- Projects need to demonstrate that the service life can be met requiring modeling of performance based on element type, concrete properties, corrosion protection systems, and exposure.
- Large bridges will have several different concretes and exposures.
 - The same concrete doesn't need to be used as severity of the exposure differs
 - Corrosion protection needs can change with exposure
- Concrete durability issues such as freezing and thawing, scaling, and ASR are addressed by testing and evaluation of materials used.
- Corrosion performance is determined by modeling the ingress of chlorides (and carbonation depth) and the protection system used.
- Probabilistic approaches are required, typically time for 10% of the structure to show corrosion initiation or time to cracking and spalling.

Models

- Models for chloride ingress fall into two groups
 - Fickean models based on Fick's Law for diffusion
 - Mass transport and chemical interaction models
- Available Fickean Models
 - Life 365[™] and Concrete Works
 - R19A from FHWA based on assumptions in fib Bulletin 34
 - Similar programs to R19A
- Mass transport and chemical interaction models
 STADIUM[®]
- Assume cracks are repaired

Fickean Models

• Pluses

- Easy to use and quick results
- Good for relative comparisons
- Negatives
 - Diffusion not applicable to non-water saturated concrete
 - Assumptions made for wetting and drying
 - Cementitious chemistry effects not addressed
 - Only estimates chloride ingress
 - Can overestimate the effects of aging on reducing permeability

Mass Transport and Chemical Reaction Models

- Pluses
 - Can predict chloride ingress in unsaturated concrete without using empirical relationships that are specific to a specific concrete and exposure condition
 - Concrete chemistry is accounted for in prediction of chloride ingress
 - Can show hydroxide to chloride ratios in the pore water
 - Shows concentrations of other ions and phases formed as function of time and depth
 - Well defined test methods for determination of transport parameters
 - Field verified
 - Can be used to estimate existing life from field data
- Negatives
 - Requires longer time and more powerful computer to get results, as chemical reactions need to be balanced at each finite element step.
 - User training is necessary

Example for Owners Side

- Owner's team evaluates design-build teams Corrosion Protection Plan (CPP) to make sure it addresses the Owner's stated requirements.
 - Verify parameters and assumptions used
 - Use alternative more rigorous models for chloride ingress if needed
 - Confirm concrete properties especially those related to chloride-ion transport
 - Provides guidance to owner as requested
 - Specialized concrete testing
 - e.g., transport properties, restrained shrinkage, mass concrete
- Example
 - Tappan Zee Bridge

Tappan Zee Bridge

- Owners Representatives
 - Owner New York State Thruway Authority
 - Engineer HNTB Corporation
 - TCG subcontractor to HNTB
- Design-Build Team
 - Tappan Zee Constructors, LLC (Consortium)
 - Fluor Enterprises
 - American Bridge Company
 - Granite Construction
 - Traylor Bros.
 - Lead Designer HDR Inc.

0

Tappan Zee Bridge

- Required Service Life
 - 100 Years

Tappan Zee Bridge Rendering Source: http://www.newnybridge.com/rendering/

Tappan Zee Bridge

- Concrete Elements
 - Towers
 - Concrete plugs for steel piles
 - Drilled shafts
 - Pile caps
 - Pier columns
 - Pier caps
 - Abutments
 - Concrete barriers
 - Deck
 - PPC concrete overlay

0

Tappan Zee Bridge

- Verification Laboratory Testing of the Deck Closure Mix
 - ASTM C39 Compressive Strength
 - ASTM C1218 Water-Soluble Chloride Content
 - NT Build 492 Chloride Migration Coefficient
 - ASTM C157 Length Change of Hardened Concrete (modified)
 - ASTM C1581 Age at Cracking under Restrained Shrinkage
 - ASTM C672 Scaling Resistance
 - ASTM C666 Freeze/Thaw Resistance
 - FM 5-578 Florida Test Method for Concrete Resistivity

6

Tappan Zee Bridge

• Example STADIUM Output for Concrete Deck Without Overlay

Tappan Zee Bridge

• Example Probabilistic Service Life Modeling Results

Tappan Zee Bridge

Construction Photo Source: http://www.newnybridge.com/photo/

Examples for Design-Build Side

- The Design-Build Team
 - Address owner's needs for service life and construction issues
 - Rigorous modeling to demonstrate concrete with specific properties will meet the chloride ingress requirements
 - Based on time of exposure
 - Exposure conditions
 - Corrosion protection systems
 - Confirm concrete properties especially those related to chloride-ion transport are met in preproduction batches and during construction (QC/QA)
 - Address mass concrete issues, freezing and thawing, ASR, abrasion
 - Address potential cracking
- Examples
 - Kosciuszko Bridge (K-Bridge)
 - New Bridge over the St. Lawrence (NBSL)

- Owner New York State Department of Transportation (NYSDOT)
- Design-Build Team
 - Skanska-Kiewit-ECCO III, Joint Venture (SKE)
 - TCG subcontractor to SKE
 - Lead Designer HNTB Corporation

- Required Service Life
 - 100 years

K-Bridge Rendering Source: https://www.dot.ny.gov/kbridge

- Concrete Elements
 - Tapertube steel piles (concrete core)
 - Pile cap/Footing
 - Towers
 - Abutments
 - Pier columns
 - Pier caps
 - Girders
 - Deck
 - Moment slab
 - Concrete barriers

- Concrete Mix Design Qualification Laboratory Testing
 - ASTM C39 Compressive Strength
 - ASTM C1202 Rapid Chloride Permeability
 - Modified ASTM C1202 Ion Migration
 - SIMCO Test Method Moisture Migration
 - ASTM C642 Porosity
 - ASTM C666 Freeze/Thaw Resistance
 - ASTM C672 Scaling Resistance
 - ASTM C512 Creep
 - AASHTO T160 Drying Shrinkage

• Example STADIUM Output for Pier Cap

Ex. Probabilistic Service Life Modeling Result (note: includes propagation)

Construction Photo January 2017 Source: https://www.dot.ny.gov/kbridge/photos

- Owner Canada
- Design-Build Team
 - TY LIN International International Bridge Technologies SNC Lavalin, Joint Venture (SSL Signature on St. Lawrence)
 - Lead Designer TY LIN International
 - TCG subcontractor to TY LIN
- Team operates bridge for 30 years and turns it over to MTO Quebec in good condition

- Required Service Life
 - 125 years

NBSL Rendering Source: http://www.infrastructure.gc.ca/nbsl-npsl/architecture-eng.html

- Service life defined as time to corrosion initiation at 90% confidence
- Concrete Elements
 - Piles
 - Pile cap/Footing
 - Towers
 - Abutments
 - Pier columns
 - Cross Beams
 - Girders
 - Deck/Multi-Use paths
 - Transit Corridor (Future Light Rail System)
 - Concrete barriers

- Concrete Mix Design Qualification Laboratory Testing performed by SIMCO Technologies (Independent from durability consultant)
 - ASTM C39 Compressive Strength
 - ASTM C1202 Rapid Chloride Permeability
 - Modified ASTM C1202 Ion Migration
 - SIMCO Test Method Moisture Migration
 - ASTM C642 Porosity
 - ASTM C666 Freeze/Thaw Resistance
 - ASTM C672 Scaling Resistance

• Example STADIUM Output – Deck, SS reinforcement, HPC

W/Cm – 0.32 SF – 5% FA – 25%

Deicing Salts: 80% NaCl, 20% CaCl₂

• Ex. Probabilistic Service Life Modeling Result – Deck, SS, HPC

Construction Photo: October 2016

NBSL Rendering Source: http://www.infrastructure.gc.ca/nbsl-npsl/architectureeng.html

Summary

- Performance Specifications are being used in major concrete bridges with the owner providing a required service life as the overall performance standard
 - Typically over 100 years
 - Probabilistic analysis used
- Design-Build Teams need to demonstrate that they can meet the service life required at a competitive cost to the owner
- This is a complicated process and both the design-build and owners teams have service life experts.