Performance Specification Compliance for Design-Build and P3 Projects

Paul G. Tourney, P.E. and Neal S. Berke, Ph.D., FACI
Ranjani Vijayakumar, EIT and Mark Dixon, EIT
Tourney Consulting Group, LLC
Kalamazoo, MI
Overview

• Performance specifications are replacing descriptive specifications in large projects with service lives > 75 years
• In design-build and P3 Projects the ultimate owner has the structure turned over to them at some point typically > 25 years
• The design-build team maintains the structure in good condition
 – Protects the owner
 – Incentive to design-build team to use performance specifications
• Performance specifications allow the team to:
 – Build the structure at the lowest cost that meets service life requirements
 – Differentiate the team through innovative use of existing technologies
 – Demonstrate performance with modeling
• Firm specializing in concrete durability and corrosion is a key member of the design-build team
Today’s Presentation

• Short review of service life guidelines and available modeling programs
• Examples from the design-build and owner’s perspective on large bridges
 – Tappan Zee Bridge
 – Kosciuszko Bridge
 – NBSL
Common Service Life Issues

• Projects need to demonstrate that the service life can be met requiring modeling of performance based on element type, concrete properties, corrosion protection systems, and exposure.
• Large bridges will have several different concretes and exposures.
 – The same concrete doesn’t need to be used as severity of the exposure differs
 – Corrosion protection needs can change with exposure
• Concrete durability issues such as freezing and thawing, scaling, and ASR are addressed by testing and evaluation of materials used.
• Corrosion performance is determined by modeling the ingress of chlorides (and carbonation depth) and the protection system used.
• Probabilistic approaches are required, typically time for 10% of the structure to show corrosion initiation or time to cracking and spalling.
Models

• Models for chloride ingress fall into two groups
 – Fickean models based on Fick’s Law for diffusion
 – Mass transport and chemical interaction models

• Available Fickean Models
 – Life 365™ and Concrete Works
 – R19A from FHWA based on assumptions in fib Bulletin 34
 – Similar programs to R19A

• Mass transport and chemical interaction models
 – STADIUM®

• Assume cracks are repaired
Fickean Models

• Pluses
 – Easy to use and quick results
 – Good for relative comparisons

• Negatives
 – Diffusion not applicable to non-water saturated concrete
 – Assumptions made for wetting and drying
 – Cementitious chemistry effects not addressed
 – Only estimates chloride ingress
 – Can overestimate the effects of aging on reducing permeability
Mass Transport and Chemical Reaction Models

• **Pluses**
 – Can predict chloride ingress in unsaturated concrete without using empirical relationships that are specific to a specific concrete and exposure condition
 – Concrete chemistry is accounted for in prediction of chloride ingress
 – Can show hydroxide to chloride ratios in the pore water
 – Shows concentrations of other ions and phases formed as function of time and depth
 – Well defined test methods for determination of transport parameters
 – Field verified
 – Can be used to estimate existing life from field data

• **Negatives**
 – Requires longer time and more powerful computer to get results, as chemical reactions need to be balanced at each finite element step.
 – User training is necessary
Example for Owners Side

• Owner’s team evaluates design-build teams Corrosion Protection Plan (CPP) to make sure it addresses the Owner’s stated requirements.
 – Verify parameters and assumptions used
 – Use alternative more rigorous models for chloride ingress if needed
 – Confirm concrete properties especially those related to chloride-ion transport
 – Provides guidance to owner as requested
 – Specialized concrete testing
 • e.g., transport properties, restrained shrinkage, mass concrete

• Example
 – Tappan Zee Bridge
Tappan Zee Bridge

• Owners Representatives
 – Owner – New York State Thruway Authority
 – Engineer – HNTB Corporation
 – TCG subcontractor to HNTB

• Design-Build Team
 – Tappan Zee Constructors, LLC (Consortium)
 • Fluor Enterprises
 • American Bridge Company
 • Granite Construction
 • Traylor Bros.
 – Lead Designer – HDR Inc.
Tappan Zee Bridge

- Required Service Life
 - 100 Years

Tappan Zee Bridge Rendering
Source: http://www.newnybridge.com/rendering/
Tappan Zee Bridge

• Concrete Elements
 – Towers
 – Concrete plugs for steel piles
 – Drilled shafts
 – Pile caps
 – Pier columns
 – Pier caps
 – Abutments
 – Concrete barriers
 – Deck
 – PPC concrete overlay
Tappan Zee Bridge

• Verification Laboratory Testing of the Deck Closure Mix
 – ASTM C39 Compressive Strength
 – ASTM C1218 Water-Soluble Chloride Content
 – NT Build 492 Chloride Migration Coefficient
 – ASTM C157 Length Change of Hardened Concrete (modified)
 – ASTM C1581 Age at Cracking under Restrained Shrinkage
 – ASTM C672 Scaling Resistance
 – ASTM C666 Freeze/Thaw Resistance
 – FM 5-578 Florida Test Method for Concrete Resistivity
Tappan Zee Bridge

- Example STADIUM Output for Concrete Deck Without Overlay
Tappan Zee Bridge

- Example Probabilistic Service Life Modeling Results
Tappan Zee Bridge

Construction Photo
Source: http://www.newnybridge.com/photo/
Examples for Design-Build Side

• The Design-Build Team
 – Address owner’s needs for service life and construction issues
 – Rigorous modeling to demonstrate concrete with specific properties will meet the chloride ingress requirements
 • Based on time of exposure
 • Exposure conditions
 • Corrosion protection systems
 – Confirm concrete properties especially those related to chloride-ion transport are met in preproduction batches and during construction (QC/QA)
 – Address mass concrete issues, freezing and thawing, ASR, abrasion
 – Address potential cracking
• Examples
 – Kosciuszko Bridge (K-Bridge)
 – New Bridge over the St. Lawrence (NBSL)
Kosciuszko Bridge (K-Bridge)

• Owner – New York State Department of Transportation (NYSDOT)
• Design-Build Team
 – Skanska-Kiewit-ECCO III, Joint Venture (SKE)
 – TCG subcontractor to SKE
 – Lead Designer – HNTB Corporation
Kosciuszko Bridge (K-Bridge)

• Required Service Life
 – 100 years

K-Bridge Rendering
Source: https://www.dot.ny.gov/kbridge
Kosciuszko Bridge (K-Bridge)

• Concrete Elements
 – Tapertube steel piles (concrete core)
 – Pile cap/Footing
 – Towers
 – Abutments
 – Pier columns
 – Pier caps
 – Girders
 – Deck
 – Moment slab
 – Concrete barriers
Kosciuszko Bridge (K-Bridge)

• Concrete Mix Design Qualification Laboratory Testing
 – ASTM C39 Compressive Strength
 – ASTM C1202 Rapid Chloride Permeability
 – Modified ASTM C1202 Ion Migration
 – SIMCO Test Method – Moisture Migration
 – ASTM C642 Porosity
 – ASTM C666 Freeze/Thaw Resistance
 – ASTM C672 Scaling Resistance
 – ASTM C512 Creep
 – AASHTO T160 Drying Shrinkage
Kosciuszko Bridge (K-Bridge)

- Example STADIUM Output for Pier Cap
Kosciuszko Bridge (K-Bridge)

Ex. Probabilistic Service Life Modeling Result (note: includes propagation)
New Bridge Across St. Lawrence (NBSL)

• Owner – Canada
• Design-Build Team
 – TY LIN International – International Bridge Technologies – SNC Lavalin, Joint Venture (SSL – Signature on St. Lawrence)
 – Lead Designer – TY LIN International
 – TCG subcontractor to TY LIN
• Team operates bridge for 30 years and turns it over to MTO Quebec in good condition
New Bridge Across St. Lawrence (NBSL)

• Required Service Life
 – 125 years

NBSL Rendering
Source: http://www.infrastructure.gc.ca/nbsl-npsl/architecture-eng.html
New Bridge Across St. Lawrence (NBSL)

- Service life defined as time to corrosion initiation at 90% confidence
- Concrete Elements
 - Piles
 - Pile cap/Footing
 - Towers
 - Abutments
 - Pier columns
 - Cross Beams
 - Girders
 - Deck/Multi-Use paths
 - Transit Corridor (Future Light Rail System)
 - Concrete barriers
New Bridge Across St. Lawrence (NBSL)

- Concrete Mix Design Qualification Laboratory Testing – performed by SIMCO Technologies (Independent from durability consultant)
 - ASTM C39 Compressive Strength
 - ASTM C1202 Rapid Chloride Permeability
 - Modified ASTM C1202 Ion Migration
 - SIMCO Test Method – Moisture Migration
 - ASTM C642 Porosity
 - ASTM C666 Freeze/Thaw Resistance
 - ASTM C672 Scaling Resistance
New Bridge Across St. Lawrence (NBSL)

- Example STADIUM Output – Deck, SS reinforcement, HPC

W/Cm – 0.32
SF – 5%
FA – 25%

Deicing Salts: 80% NaCl, 20% CaCl$_2$
New Bridge Across St. Lawrence (NBSL)

- Ex. Probabilistic Service Life Modeling Result – Deck, SS, HPC
New Bridge Across St. Lawrence (NBSL)

Construction Photo: October 2016

NBSL Rendering
Source: http://www.infrastructure.gc.ca/nbsl-npsl/architecture-eng.html
Summary

• Performance Specifications are being used in major concrete bridges with the owner providing a required service life as the overall performance standard
 – Typically over 100 years
 – Probabilistic analysis used

• Design-Build Teams need to demonstrate that they can meet the service life required at a competitive cost to the owner

• This is a complicated process and both the design-build and owners teams have service life experts.