THE FUNDAMENTAL APPROACH OF SHOTCRETE APPLICATION FOR AN ADEQUATE STRUCTURAL PERFORMANCE

SHOTCRETE SESSION
NEW 506 GUIDE AND RECENT DEVELOPMENTS

Pasquale BASSO, Ph.D. Candidate
Marc JOLIN, Ph.D.
Bruno MASSICOTTE, Ph.D.
Benoît BISSONNETTE, Ph.D.
Introduction: *The versatility of shotcrete*

Retaining walls

Structural shotcrete ltd., Vancouver, 2016

Structural columns
Introduction: *Factors affecting encapsulation*

- **Encapsulation of reinforcing bars**
 - **Equipment**
 - Condition
 - **Spraying technique**
 - Distance between nozzleman and surface
 - Air flow velocity
 - **Mixture properties**
 - Accelerators
 - Mineral admixtures
 - Consistency
 - **Structural layout**
 - Number of bar layers
 - Bar position
 - Overhead vs. sidewall
 - Lap splices

Perfect encapsulation

Voids of variable geometry and position
Introduction: **Types of shotcrete process**

DRY-MIX
- Water control
- Dry or pre-dampened mixture

WET-MIX
- Air flow adjustment
- Fresh mixture
Introduction: *Dry-mix adjustment before spraying*

1) Air flow specification

2) Water control

3) Spraying technique

Research problem Objectives Methods Results and discussion Conclusion
Introduction: The bond mechanism

Naturally, bond will be reduced if voids behind bars are created!
Research problem: \textit{Acceptance criteria}

Before

\begin{itemize}
 \item ACI 506.2-95
 \begin{itemize}
 \item Core grade evaluation from 1 to 5
 \end{itemize}
 \item ACI 506.2-13
 \begin{itemize}
 \item Removal of the core grade system (only intended for C660 certification)
 \end{itemize}
\end{itemize}

Now

\begin{itemize}
 \item Quality assessment based on experience (no correlation with bond reduction)
 \item Inadequate factors applied (if any) for bar splices and development lengths
\end{itemize}

Fischer M. et al., Crossrail learning legacy, 2015
Objectives

Study bond strength reduction caused by voids

Design

Inspection

Concerning bond strength

BOND IN CONCRETE
PART 2 OF 3

Monday 27th March
1:30 p.m.
Methods: *Dry-mix pull-out specimens*

Introduction

Research problem

Objectives

Results and discussion

Conclusion

Varying water flow

Consistency

un-bonded perimeter, u.p.
Methods: *Dry-mix pull-out specimens*

Consistency

- Varying water flow

Methods:
- Dry-mix pull-out specimens

Specimen Dimensions:
- Width: 245 mm
- Height: 315 mm
- Depth: 300 mm
- Embedded depth: 150 mm

8 / 17
EFFECT OF CONSISTENCY
Results and discussion

- Statistically same maximal load
- Increased slip because of weaker concrete around the bar

\Rightarrow \hspace{1cm} Statistically same maximal loads

\[f'_c = 50 \rightarrow 40 \text{ Mpa}^* \]

\Rightarrow \hspace{1cm} Reduction of $\approx 50\%$ of the maximal load

* 1 MPa \approx 145 PSI
EFFECT OF UN-BONDED PERIMETER
Results and discussion

Unable to create voids between 5 to 20% u.p.

Difficult to assess variation of u.p.

≈ 50% of bond strength reduction
HOW DO WE BETTER CONTROL VOID SIZES?

THE ANSWER LIES ON:

CIP + ARTIFICIAL VOIDS
HOW DO WE BETTER CONTROL VOID SIZES?: CIP + ARTIFICIAL VOIDS

Poured shotcrete mixture with MRWR

Better manoeuvrability

$w/b = 0.45$

$D_{\text{max}} = 10 \text{ mm}$

8% Silica fume

Slump flow $\approx 450 \text{ mm}$
Results and discussion

- Critical u.p. threshold of approximately 20% at service loads
- Gradual reduction at ultimate load
- Statistically same slope and intercept
- The height does not influence bond strength reduction
Do *artificial voids* accurately represent voids created with shotcrete?
Results and discussion

PERFECT ENCAPSULATION

VOIDS OF 30 ~ 35% \textit{u.p.}

\[H_0 : \mu_c = \mu_{BP} \]

\[\text{vs.} \]

\[H_a : \mu_c \neq \mu_{BP} \]

\(P_{max} \) are equal for both methods of concrete placement.
Results and discussion

What is the next step?: Bonded lengths seen in structures

SPECIMENS: ASTM A944-10

TEST SET-UP

- Concrete cover (2.5 d_b)
- Bond length (6.3 d_b)
- Lead length (0.8 d_b)
- Test bar (No. 5 and 6)

*1 inch = 25.4 mm
What is the next step?: Bonded lengths seen in structures

- Impact of localized voids on bond reduction
- Stress redistribution
Conclusion

High compaction caused by shooting creates better bar-concrete interface in comparison with regular CIP concrete.

Low consistencies (≤ 1.4 Mpa) may cause «good» encapsulation but slip is enlarged.

Threshold of $\approx 20\%$ $u.p.$

- Drastic reduction at 0.25 mm slip
- $\approx 50\%$ bond reduction at ultimate load

The height of voids do no influence significantly bond strength reduction.
High compaction caused by shooting creates better bar-concrete interface in comparison with regular CIP concrete.

Low consistency (≤ 1.4 Mpa) may cause « good » encapsulation but slip is enlarged.

Threshold of ≈20 % u.p.
- Drastic reduction at 0.25 mm slip
- ≈ 50% bond reduction at ultimate load

The height of voids do no influence significantly bond strength reduction.

Conclusion

DURABILITY ISSUES NEED TO BE ADRESSED

ON-GOING INVESTIGATION

BASED ON ONE BAR AND PULL-OUT SPECIMENS

DURABILITY ISSUES NEED TO BE ADRESSED
Thank you for your attention!

Do you have any questions?