What Aggregate Packing is Optimal?

Eric P. Koehler, Ph.D., P.E.

Director of Quality Titan America ekoehler@titanamerica.com

ACI Fall 2014 Convention

Washington, DC

October 26, 2014

Packing of Aggregate in Concrete

Concrete is a suspension of aggregates in paste.

Paste and air to fill voids in compacted aggregates

Minimum Particle Size

It is best to consider combined solid particles due to interaction between particles. In reality, minimum size approaches zero.

For analysis, need to consider a specific size.

1 µm

colloidal particles (strong contributor to strength, viscosity, HRWR performance)

75 μm maximum powder size
5 mm minimum coarse aggregate

Why Consider Packing Density?

Packing provides an indication of voids content, which must be filled with paste and air.

Higher aggregate volume results in improvements in strength, stiffness, creep, drying shrinkage, and permeability.

...but not the same function

Aggregate should be as dense as possible, but not more.

Constraints

Maximum size Workability, finishability and pumpability Segregation resistance Strength and stiffness Cementitious materials requirements Local material availability Bin space in concrete plant

Constraints

Maximum size

Increasing maximum size results in higher packing and lower viscosity. Decreasing maximum size results in better passing ability and segregation resistance.

Workability

Grading for best workability is typically finer than for maximum packing. For a given packing density, a well-shaped aggregate will have result in better workability.

A finer combined grading may be required for pumpability.

Strength and stiffness

Crushed aggregates typically result in higher strength, but lower workability. Concrete modulus of elasticity highly dependent on aggregate stiffness.

Credit: de Larrad, F. (1999). "Concrete Mixture Proportioning". Notation added.

Cementitious Materials

Cementitious materials affect the packing of fine and coarse aggregate. (Particles must differ in size by 10x to avoid interaction.)

Strength and durability requirements significantly affect the amount of cementitious materials required.

Amount of cementitious materials needed for optimal dry powder packing may not be sufficient for strength and durability.

High cementitious materials content enables a reduction in the amount and fineness of fine aggregate.

Packing Near Optimal

Near maximum packing, changing the ratio of coarse and fine aggregate does not affect packing density much.

The amount of fine material is less than in a typical concrete mixture, as other considerations influence selection of aggregate blend in concrete.

Idealized Particle Size Distributions

Fuller and Thompson (1907)

$$p_t = \left(\frac{d}{D}\right)^{\frac{1}{2}}$$

Generalized power curve

$$p_t = \left(\frac{d}{D}\right)^q$$

Faury suggests q=0.20 Kennedy suggests q=0.45

Balomey

$$p_t = f + (1 - f) \left(\frac{d}{D}\right)^{\frac{1}{2}}$$

Many more...

...the hypothesis that there is an ideal size grading for concrete aggregate, or for all solid material in concrete, has now become almost if not entirely abandoned.

--T.C. Powers, 1968

The Properties of Fresh Concrete

Power 0.45 Curve

Exponents less than 0.45 are preferred: they result in finer gradings and potentially higher packing.

Curve should pass through minimum particle size considered, **not zero**.

Can use separately on power and aggregate.

An effective starting point for optimizing aggregates provided other relevant factors are considered.

Models for Calculating Packing Density

Two purposes:

- 1) Determine predicted packing density
- 2) Determine optimal blend

Consider:

- 1) What purpose you need
- 2) Accuracy with respect to these purposes
- 3) Data input needed for accurate results: particle size distribution and shape

Examples:

Furnas Aim and Goff Toufar, Klose, and Born Compressible Packing Model, de Larrard Many more...

Rheology Models for Suspensions

Einstein (1906) for low concentrations

$$\eta = \eta_s (1 + 2.5\phi)$$

For concentrated suspensions

$$\eta \approx \eta_s \left(1 + [\eta] \phi + K_H \phi^2 + \ldots \right)$$

Krieger-Daugherty (1959)

$$\eta = \eta_s \left(1 - \frac{\phi}{\phi_m}\right)^{-[\eta]\phi_m}$$

 η = viscosity of suspension η_s = viscosity of suspending medium ϕ = concentration of solid materials ϕ_m = max concentration of solid materials = f (particle shape, size distribution, and flocculation) $[\eta]$ = intrinsic viscosity = f(particle shape) K_H = Huggins coefficient

 ϕ_m is not packing packing density, but applies to solid particles in suspension. Intrinsic viscosity affects viscosity beyond the influence of ϕ_m

Aggregate Suspension Proportioning Method

Concrete is considered a suspension of aggregates in paste.

Paste and air to separate aggregates Total Concrete Volume Compacted Aggregates -Paste and air to fill voids in compacted aggregates Fill voids with paste Select combined **Adjust composition** of paste aggregates + air

ORIGINALLY Koehler and Fowler 2007

NEW – Coming Soon Revised and Updated ACI 211.6T

Aggregate Suspension Proportioning Method

- Select maximum aggregate size
- **2** Select combined aggregates
- **3** Determine combined aggregate voids content and shape/angularity factor
- **4** Calculate paste and air volume
- **5** Select maximum w/cm and blend of powders for hardened properties
- **6** Select air content for freeze-thaw durability
- Select w/p and admixture doses for workability
- 8 Calculate volumes and weights of individual constituents
- 9 Evaluate trial mixtures and make adjustments

Aggregate Selection

Grading | There is no universally optimal grading.

Shape, Angularity, Texture | Balance water demand and strength.

Paste Volume (As Influenced by Aggregates)

Voids Content

Measure dry-rodded bulk density with ASTM C29, but use combined aggregate (fine+coarse). Calculate the voids content from the DRBD.

$$\% voids_{compacted_agg} = \left(1 - \frac{DRBD}{\left(62.4 \frac{lb}{ft^3}\right) \sum_{i=1}^{n} \left(p_i \left(SG_{OD}\right)_i\right)}\right) * 100\%$$

Shape-Angularity Factor

Shape-Angularity Factor	1 (well shaped, well rounded)	2	3	4	5 (poorly shaped, highly angular)
Description	natural river/glacial gravels and sands	partially crushed river/glacial gravels	well-shaped crushed coarse aggregate or manufactured sand with most corners > 90°	crushed coarse aggregate or manufactured sand with some corners <90°	crushed coarse aggregate or manufactured sand with many corners ≤90°

Paste Volume (As Influenced by Aggregates)

Paste Composition

Select paste composition to achieve desired strength, durability, and other hardened properties.

Adjust water/powder and admixtures to achieve workability.

Typical relationships apply.

Summary

Aggregate packing is one of several factors to consider in selecting aggregates.

Aggregate gradings finer than maximum packing density are often preferred.

The packing density, along with shape, is useful in determining amount of paste required.

Consider the combined solid particle size distribution.

Aggregate Suspension Mixture Proportioning Method (ACI 211.6T) considers packing density.

What Aggregate Packing is Optimal?

Eric P. Koehler, Ph.D., P.E.

Director of Quality Titan America ekoehler@titanamerica.com

ACI Fall 2014 Convention

Washington, DC

October 26, 2014