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Design Codes and Structural Fire
Engineering

* Architect and Structural Engineer
* FuroCode 2:

— estimate the fire resistance of structural elements.

— basis for advanced models at the structure level.

» 2005 NBCC:
— Objective-Based Design.

e US:
— ASCE 7 / Performance-Based Design.
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RESEARCH OBIJECTIVES

* Provide engineers with the ability to analyze
structures exposed to fire

— Simple Methods (develop engineering sense).

* Develop design tools for different RC
elements.

This presentation will cover the major challenges
and the overall vision
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(1) Thermal Strains
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(2) Temperature Distribution
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(3) Unrestrained Thermal Strains
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(4) Sectional Analysis at Elevated
Temperatures
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Thermal Strains.

Transient Strains.

Temperature Distribution.
Temperature-dependent material properties.
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(5)EA and El for Fire-Exposed Elements

Simplified Approach to Calculate EA+ and El
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(6) Solution Procedure for a Structure

1) Calculate primary moments & axial forces in different members.

2) ldentify elements exposed to fire and use their section properties
and fire duration to evaluate ¢; ,¥; , EA s and El .

3) Convert € and ¥: to elongations and rotations

4) Apply the elongations and rotations for fire-exposed elements and
calculate the secondary moments and associated axial forces.

5) Recalculate EA_, Eis, and the primary moments.

6) Repeat steps 4 and 5 until convergence is achieved.
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Application for a Continuous Beam
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(7) Simplified Tools

* Stress-Block Parameters of RC Beams Exposed
to Fire.

* |nteraction Diagrams of RC Columns Exposed
to Fire.

e Shear Capacity of RC Beams Exposed to Fire.
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(8) Strain Defining Section Capacity
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Location of Critical Strain
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(9) Axial Capacity of Fire-Exposed RC
Columns
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Temperature Distribution

Wickstrom’s Simple Method (1986)
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Average Temperature
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Integration
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Axial Capacity.xlsm
Axial Capacity.xlsm

Validation (33 columns)
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(10) Validation RC Beams
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Validation for RC Walls
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Validation Restrained Beam

1. Loaded prior to Fire test

2. P1 and P2 were 59 kN prior to fire
test.

3. During fire test, P1 and P2 varied
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stays constant.
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Validation for a Frame
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Shear Capacity Validation
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For additional details, please refer to:

* Youssef MA, Diab M, EL-Fitiany SF, in-press, “Prediction of the Shear Capacity of
Reinforced Concrete Beams at Elevated Temperatures”, Magazine of Concrete
Research.

* El-Fitiany SF, Youssef MA, 2014, “Interaction Diagrams for Fire-Exposed Reinforced
Concrete Sections”, Engineering Structures, 70: 246-259.

 El-Fitiany SF, Youssef MA, 2014, “Simplified Method to Analyze Continuous
Reinforced Concrete Beams during Fire Exposure”, ACI Structural Journal, 111(1):
145-155.

e El-Fitiany SF, Youssef MA, 2011, “Stress-Block Parameters for Reinforced Concrete
Beams during Fire Events”, ACI SP-279: Innovations in Fire Design of Concrete
Structures, Paper No. 1, pp. 1-39.

* El-Fitiany SF, Youssef MA, 2009, “Assessing the Flexural and Axial Behaviour of
Reinforced Concrete Members at Elevated Temperatures using Sectional Analysis”,
Fire Safety Journal, 44(5): 691-703.

* Youssef MA, El-Fitiany SF, Elfeki M, 2008, “Flexural Behavior of Protected Concrete
Slabs after Fire Exposure”, ACI SP-255: Designing Concrete Structures for Fire
Safety, Paper No. 3, pp. 47-74.

* Youssef MA and Moftah M, 2007, “General Stress-Strain Relationship for Concrete
at Elevated Temperatures”, Engineering Structures, 29 (10): 2618-2634.
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Thank You !!
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