Teaching Engineering Online

A Review of Challenges and Solutions to Teaching Technical Content in Online Courses

Ruth E. H. Wertz, Ph.D., P.E.
Kenneth Lamb, Ph.D., P.E.

Overview

• Common myths/concerns of online education
 – Technical content at distance
 – Laboratories a part of online courses

• Concerns specific to teaching technical content online
 – Organizing/presenting technical content
 – Options for teaching laboratories

• Tips for getting started

Introduction

• What challenges have you faced, or are worried about facing?

• Common myths/concerns
 – Enrollment
 – Quality of learning outcomes
 – The need for instructors will decline
 – Security/authenticity

Enrollment

4,600,000
Colleges require that at least one class online
By 2014 the number will increase to 18.65 million
1/2 of 4500 brick-and-mortar colleges are now offering degrees online
96% of traditional universities now offer some online instruction

By Ruth E. Wertz, Ph.D., P.E.
Kenneth Lamb, Ph.D., P.E.

ACCREDITATION OF TECHNICAL DEGREE PROGRAMS ONLINE

ACI Spring 2014 Convention
March 23 - 25, Reno, NV

Current Practices in On-line Learning

ACI Spring 2014 Convention
March 23 - 25, Reno, NV
Quality of Learning Outcomes

- No significant difference
 - Database of literature that compares distance ed outcomes to traditional face-to-face outcomes (>350 papers)
 - Evidence supports that distance learning outcomes are as good or better than face-to-face

Source: http://www.nosignificantdifference.org/

Need for instructors

- Some research (e.g., Sloan-C & Babson Research Group) suggests that online learning increases the need for instructors (e.g., some institutions limit class sizes to 20 or less).
- Another line of research on the Community of Inquiry framework (e.g., Garrison, Anderson, & Archer, 2000) shows that learner-instructor interactions and peer-learner interactions are important components of creating meaningful learning experiences online.

Security/Authenticity

- Services available:
 - Clemson University & ICAI Assessment Guide
 - Random password and security questions
 - Proctor centers
- Other techniques
 - Video conferencing
 - Establishing honor codes

Technical Content Online

- Specific challenges:
 - Complex mathematical and visual models
 - Communicating and engaging students with technical concepts in text-based environment
 - Hands-on laboratories

Choosing the right tech:

- Video/screen capture software (e.g., Jing/Camtasia)
- Tablet PCs
- Smart pen (Livescribe) that links hand-writing to audio

Designing the course for online environment:

- How will students interact with instructor(s)?
- How will students interact with each other?
- What will students be required to learn (e.g., clear and measurable objectives)?
- How will learning materials prepare students for success?

Options for Labs

- Remote labs
 - At-home kit
- Virtual labs
 - Real-time, virtual control of physical lab equipment
- Simulation labs
 - Simulating an experiment through computer software
- Intensive residency periods
 - One or two short periods of time spent in a face-to-face lab
Remote Labs

- **Advantages:**
 - High authenticity

- **Limitations:**
 - Not easily scalable
 - Limited to experiments that use common materials and instruments

Virtual Lab

- **Advantages**
 - Authentic (generates real data, user makes decisions)
 - Scalable

- **Limitations:**
 - Requires on-site staff for set-up
 - May require more sophisticated equipment than if same lab were performed face-to-face
 - Some of the “hands-on” feel is lost

- **Recommendations:**
 - May be more appropriate for well-established programs

Simulation Lab

- **Advantages:**
 - Good for illustrating concepts and relationships between variables
 - Real-time feedback without setting up much
 - Scalable

- **Limitations:**
 - Simulated data may not be truly representative of real data
 - Expensive to generate or purchase software

- **Recommendations:**
 - May be best used as pre-lab exercise

Intensive Residency Labs

- **Advantages:**
 - Use existing laboratory equipment and procedures without additional investment
 - Authentic hands-on lab in supervised environment

- **Limitations:**
 - Requires time commitment and travel that some students may find challenging

Tips for Getting Started

- **Cost depends on delivery model**

 Low Cost Model
 - Modules consist of readings and problem sets from textbook

 High Cost Model
 - Modules consist of readings, interactive discussions, supplemental “lecture notes,” demonstrations, examples of complex models, immediate feedback self-evaluation quizzes

 - About $3k for low cost model, up to $50k for high cost model.
 - In general, the goal would be to fall somewhere in between

Anecdotal best practices from the MCE program

- Use short screen casts explain difficult concepts
- **$50 - $1000 for software depending on instruction and needs; free software is available, but with limitations**
- A typical 50-minute lecture will reduce to 2-3 (20-30 minutes total)
- Asynchronous and can be replayed as much as needed.
- Organize content into modules
 - Generally organized into “weeks” for convenience
 - Group learning materials, activities, and assignments into chunks that will help students follow the curriculum and gradually build understanding
Tips for Getting Started

• Anecdotal best practices from the MCE program
 – Incorporate peer interaction
 • Group discussion
 – open-ended questions that encourage students to explore difficult concepts in a way other than plug-and-chug equations
 • Peer review
 – professional skill expected in the work force
 • Group work
 – reinforce teamwork skills for distributed teams

Ruth E. H. Wertz, Ph.D., P.E.
Kenneth Lamb, Ph.D., P.E.

Thank you!

Thomas J. Descoteaux, Ph.D., P.E.
Professor of Civil and Environmental Engineering
Program Director: Master of Civil Engineering
College of Graduate and Continuing Studies
Norwich University
tdescote@norwich.edu

Ruth E. H. Wertz, Ph.D., P.E.
Kenneth Lamb, Ph.D., P.E.

Ruth E. H. Wertz, Ph.D., P.E.
Assistant Professor of General Engineering
Valparaiso University
ruth.wertz@valpo.edu
Phone: 219-465-9695

Kenneth W. Lamb, Ph.D., P.E.
Assistant Professor, Parsons Fellow
Cal Poly Pomona
kwlamb@csupomona.edu
Phone: 909-869-3422

Ruth E. H. Wertz, Ph.D., P.E.
Kenneth Lamb, Ph.D., P.E.