

Purdue University School of Civil Engineering

Performance of Concretes Made Using Portland Limestone Cement

Prepared by

T.J. Barrett, H. Sun, L. Barcelo, and

J. Weiss, wjweiss@purdue.edu

Prepared for

American Concrete Institute, April 15th, 2013

Outline for PLC Talk

- Motivation: Question What, Why, Who, How (Where)
- What are Potential Consequences
- Previous Shrinkage Study
 - Phase I –Clinker #1
 - Phase II Using Added Limestone
 - Phase III Clinker #2(4 Clinker study)

Carne – Verdon Gorge Southern France

- Current Shrinkage Investigation
 - Three Systems OPC, PLC, PLC-S
- Summary

Portland Limestone Cement What is it?

- PLC has been added to current cement specifications ASTM C595/AASHTO M240
 - 5 to 15% intergroundlimestone
 - Min. CaCO₃ content
 - Physical requirements same as OPC
 - New test requirementsMBI and TOC
- Type IL blended cements, Type IT ternary cements

PLC – Why Do We Want It? Cement and CO₂ Production

- You will hear cement accounts for 7-8% of global CO₂ (Mehta 1998)
- Where is the CO₂ coming from
 - Calcination (50) $caco_3 \xrightarrow{\text{yields}} cao + co_2$
 - Combustion (40)

 - Transportation (10) $C + O_2 \xrightarrow{\text{yields}} CO_2$
- Concrete has relatively low carbon emission per unit; however widespread use of concrete makes it a major contributor to manmade CO₂ emissions

Portland Limestone Cements Why do we want it?

- Sustainability
 - less energy is consumed
 - Less CO₂ & greenhouse

Portland Limestone Cement Who Has Used This Before?

 Technical information on use of limestone of up to 15% (PLC)

Summary of Contents

- environmental benefits
- history of use of cements with limestone
- chemical and physical effects on properties

Portland Limestone Cement How is it Made ... In North America

Finer

- Similar performance to OPC is targeted
- PLC is generally ground finer than OPC
 - Overcome dilution
 - Higher fineness may act as a nucleating agent to increase early age strengths
 - Improve packing

 Higher reaction rates may show benefits of blending with other supplementary materials Less

Outline for PLC Talk

- Motivation: Question What, Why, Who, How (Where)
- What are Potential Consequences
- Previous Shrinkage Study
 - Phase I –Clinker #1
 - Phase II Using Added Limestone
 - Phase III Clinker #2(4 Clinker study)
- Current Shrinkage Investigation
 - Three Systems OPC, PLC, PLC-S
- Summary

PLC Performance Studies

Fineness and Shrinkage Cracking

- Burrows (1998) Monogaph
- Bentz, D.P., et al. (2001) ACERS
- Chariton, T., and Weiss, W. J., (2002)
 ACI SP Cracking Data shown
- Several reports say finer cements crack earlier
- Blaine fineness often used in these studies however we are not really after surface area
- Rather we are after the space between particles – pore sizes important

Origins of Shrinkage (Young and Laplace Equation)

Thomas Young (1773 – 1829) After Lura et al 2007

Pierre-Simon, marquis de Laplace (1749 - 1827)

Shrinkage Concepts (Young-Laplace)

$$\sigma = \frac{2\gamma \cos \theta}{r}$$

capillary stress (σ) pore geometry (r)surface tension (γ)

Important Take Aways

Shrinkage is related to the space between

pores that empty

- Some pores are more important
 - pores less than a few nm (other effects)
 - pores greater than50 nm (low stress)
- Pore size is related

 Kelvin Radius (nm)

 to the particle size distribution of the cement

Important Distinction Between Blaine Fineness for PLC and OPC Will Be Made

- Example of a PSD for Cement with different Blaine fineness from Bentz et al. (2001)
- You can notice that the change in

Blaine fineness (a measure of permeability) also significantly alters the pore size distribution (shifting the entire curve)

Outline for PLC Talk

- Motivation: Question What, Why, Who, How (Where)
- What are Potential Consequences
- Previous Shrinkage Study
 - Phase I –Clinker #1
 - Phase II Using Added Limestone
 - Phase III Clinker #2(4 Clinker study)
- Current Shrinkage Investigation
 - Three Systems OPC, PLC, PLC-S
- Summary

Bucher et al. (2009a) – Phase I Commerically Ground Blends

- 0%, 5%, 10% limestone replacement by mass
- 0% limestone, Type I/II, Blaine fineness 382 m²/kg
- 5% limestone, Blend of 0% and 10%
- 10% limestone, Type GU, Blaine fine. 461 m²/kg
- HRWRA
- w/cm = 0.30
- Mortar 55% aggregate by volume

Restrained Ring Test

- Using an Instrumented Ring
- Measure Strain that Develops in Steel
- Determine the Pressure Required to Obtain that Strain
- Apply Pressure to Concrete and Obtain Tensile Stress

-100 -200 20 30 Time (Days) **Original Ring Measured Strain** Pres Pres $\left|\sigma_{Concrete}(t)\right|_{r=R_{IC}} = \varepsilon_{Steel}(t)E_{S}\frac{\left(R_{OS}^{2} - R_{IS}^{2}\right)}{2}$

Hossain and Weiss, CCC, 2004

Restrained Ring Results

 The delay in time to cracking indicates that cements with limestone are slightly more resistant to cracking than plain cement systems.

Shrinkage in Paste

Phase II (Bucher 2009b) Cement with Limestone Replacement (Not Interground)

- Bucher et al. (2009) examined how limestone addition of limestone/replacement of cement influenced shrinkage & cracking of mortar.
- 3 sizes of limestone were used to replace 10% of the cement by volume (Unlike Other Phases)
 - small 3 micron
 - medium 17 micron, and
 - large 100 micron
- Note these are not equivalent performance

Phase II (Bucher 2009b) Shrinkage and Cracking Studies Cement/Limestone

- Fineness influences stress
- Fine limestone was similar
- Binder was
 a cement
 with additional
 limestone of different particle sizes

Note these are not equivalent performance

Phase III – An Additional System Investigatged (Barrett et al. 2012)

- Used a commercially interground cement
- No increase in cracking tendancy

Outline for PLC Talk

- Motivation The Questions
 What, Why, Who, How (Where)
- What are Potential Consequences
- Previous Shrinkage Study
 - Phase I –Clinker #1
 - Phase II Using Added Limestone
 - Phase III Clinker #2 (4 Clinker study)
- Current Shrinkage Investigation (IV)
 - Three Systems OPC, PLC, PLC-S
- Summary

Phase IV - Objectives

- Shrinkage and cracking potential in 3 systems
- Clinker and limestone interground (industrial)
- w/c = 0.39, mortar with 55% sand volume

OPC (3.7% L)

PLC (11% L)

PLC-Slag (10% L + 12% Slag)

Study Outline

 Task 1: Particle Size and Pore Size Distribution

Particle Size Distribution - Cumulative

Pore Size Distribution

Study Outline

Task 2: Chemical Shrinkage

Fundamental Volume Change

- Le Chatelier
- 1850-1936
- Volume of the reactants larger than the volume of the products
- Chemical Shrinkage

Chemical Shrinkage

- Observed by Le Chatelier over a century ago
- "the volume reduction associated with the hydration reactions in a cementitious material"
- Powers conceptual model shown ~
 6.4% reduction

Chemical Shrinkage per gram of binder

Study Outline

Task 3: Autogenous Shrinkage

Autogenous strain is "the bulk strain of a closed, isothermal, cementitious material system not subjected

ASTM C 1698 Autogenous Shrinkage

- Autogenous shrinkage (Corrugated Tube)
- OPC and PLC have similar shrinkage
- PLC-S has a slightly lower early shrinkage

Study Outline

Task 4: Restrained Shrinkage

Restrained Shrinkage

- Dual restrained ring test
- Shows similar stress development and age of cracking

Study Outline - Summary

- Task 1: Particle Size and Pore Size Distribution
 - Less big particles PLC, PLCS
 - pores similar as related to shrinkage
- Task 2: Chemical Shrinkage
 - Less early age chemical shrinkage
- Task 3: Autogenous Shrinkage
 - Lower shrinkage for PLC, PLCS
- Task 4: Restrained Shrinkage
 - OPC, PLC, PLCS Similar

Summary

- PLC is not just a dilution of OPC
- PLC, PLC-Slag are engineered differently to obtain 'Similar Performance' (f'c at 28 days)
- Have shown similar or less autogenous shrinkage and similar or less restrained shrinkage cracking
- Explained using Young-Laplace equation showing that the increase in Blaine fineness does not alter pores in range of interest