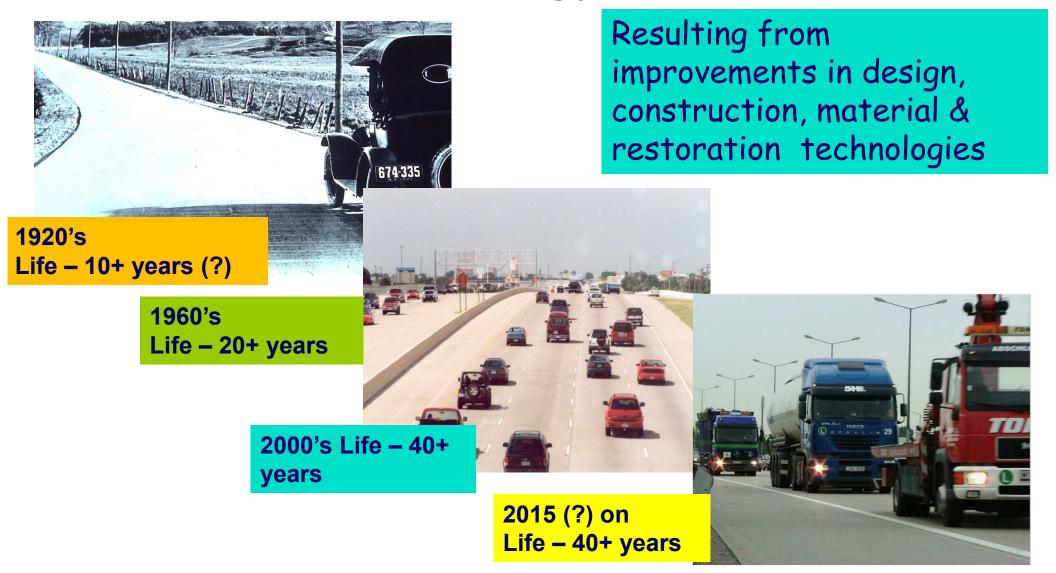
ACI Spring 2013 Convention Minneapolis, Minnesota – April 15, 2013

Considerations for Sustainable Long-Life Concrete Pavements

Shiraz Tayabji Fugro Consultants, Inc., Columbia, MD FHWA ACPT Program Team

Presentation Outline

> Introductory

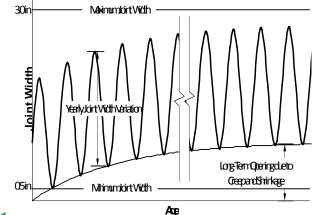

Top 3 Design Considerations

Focus on Design Features

- Joint Load Transfer
- PCCP Support Condition/Drainage
- Top 3 Construction Considerations
 - Construction Quality
 - Concrete Management from Plant to Curing
 - Contractor Process Control
- ➢ Top M&R Consideration

Timely M&R

Concrete Pavements – A Mature Technology in the Year 2013



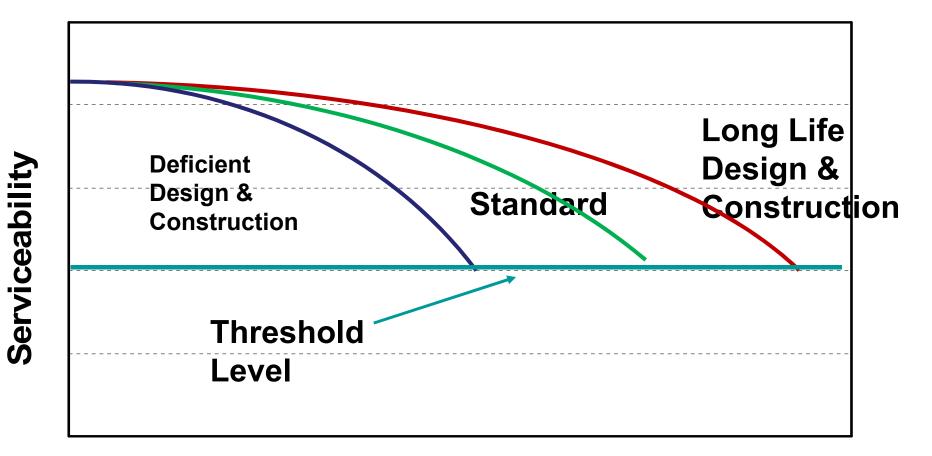
Current US Expanded Definition of Long-Life Concrete Pavements

- Original PCC surface service life 40+ years
 - The next frontier 60+ years service life
- Pavement will not exhibit <u>premature</u> failures and <u>materials</u> related distress
 - Pavement failure should be a result of traffic loading
- Pavement will have reduced potential for cracking, faulting & spalling, and
- Pavement will maintain desirable ride and surface texture characteristics with <u>minimal intervention</u> <u>activities to correct for ride & texture, for joint resealing,</u> <u>and minor repairs</u>

So, What Are the Design Targets?

- Pavements need to accommodate
 - 40 to 60+ annual seasonal changes
 - 15,000 to 20,000 daily temperature variations in the slab (curling)
 - And, joint openings/closings
 - 100 to 300 million truck loadings
 - Peak slab stresses & corner/joint deflections
 - 200 to 600 million axle loadings at joints
 - Same no. of corner deflections
 - Same no. of the loads transferred by the critical dowel bars
 - And, little or no maintenance & restoration activities

What Are Our Expectations of Our Concrete Pavements?


➢ At end of 40 year service life

○ Or, 60+ years service life – the next frontier

Distress	Value
Cracked Slabs, %	10 - 15
Faulting, in. (<u>Consider grinding when threshold is</u> <u>reached)</u>	0.125 (?)
Smoothness (IRI), in./mile (<u>Consider grinding when threshold is</u> <u>reached)</u>	<120
Spalling	Minimal
Materials Related Distress	None

Many agencies now routinely grind concrete pavements every 12 to 15 years

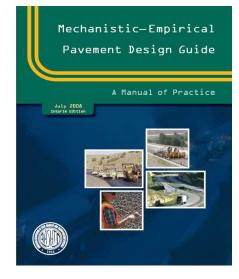
Pavement Performance Expectation

Time or Traffic

Top 3 Design Considerations

- 1. Focus on Design Features
- 2. Load Transfer at joints
- 3. PCCP Support Condition/Drainage

1 - Comprehensive Long-Life Concrete Pavement Design


- More than just slab thickness
- Incorporation of appropriate design features to enhance performance (e.g., improved base, dowel bars, etc.)
 - Reduce stresses/deflections/curling
- > Must design pavement as a system
 - Consider interactive effects of all design elements
 - Consider overall cost effectiveness
 - Consider use of locally available & recycled materials (sustainable approach)

1 - Comprehensive Long-Life Concrete Pavement Design

- New Mechanistic-Empirical Pavement Design Guide (MEPDG) allows <u>optimization</u> of many key design features to develop LLCP designs
 - \circ Joint spacing
 - o Base type (& drainage?)
 - Edge support
 - Load transfer at joints
 - Concrete thickness/strength

End result

- More cost-effective & reliable designs
- More sustainable designs

1 - Comprehensive Long-Life Concrete Pavement Design

Some simple changes in approach to reduce concrete volume & amount of other materials <u>without</u> <u>compromising performance</u>

- \circ Reduce slab thickness
 - Improve foundation/base (European approach)
 - Use widened lane & shorter joint spacing
- Reduce materials
 - Reduce no. of dowel bars (9 or 10 vs.12 per lane)
 - Reduce joint sealant material (single cut sawing)

Other changes

 Consider two-lift design & construction to allow use of local/marginal & recycled materials in the lower lift.

2 - Joint Load Transfer –

> Joint spacing – Typical practice

- 15 ft (4.6 m) max for most highway applications
- O Uniform spacing & perpendicular joints

Load transfer (40/60+ year design)

Corrosion protection a must

- Epoxy-coated (not long-lasting)
- Clad bars (steel/zinc)
- Microcomposite steel (MMFX)
- Fiber-reinforced polymer (FRP)

2 - Joint Load Transfer

Dowels for truck-loaded highways, typically for

- Slab t ≥ 8 in or ESALs ≥ 5 million
- Minimum 1.25 in (32 mm) diameter

Round dowels meet needs & are economical

➤Need to maintain LTE at joints - > 70%

>NO NEED FOR MIDDLE 2 to 3 BARS IN EACH LANE

2 - Joint Load Transfer

For corner loading, outer 3 to 4 dowels critical
 Dowel size can be adjusted for widened lanes

3 – Support Condition/Drainage

- ➤ US Approach Do the best we can?
- European approach Start with a good (sta foundation

- We must construct better support <u>cannot undo poor</u> <u>support in future R&R</u>
- Non-erodible base prevention of pumping
- Stiffer support reduction in slab stresses & deflections; less rolling resistance (MIT study)
- Provide stable and uniform construction platform achieve better concrete surface finish

Mentality switch – Refer to a base as a base & not as a subbase

3 – Support Condition/Drainage Base Type Selection

- Provide for stiff/stable support
- Provide for needed base-slab friction
- Provide for needed frost heave protection
- Provide for needed subsurface drainage
- Untreated granular (aggregate) bases should be reserved for low traffic
- Stabilized (treated) bases preferred for LLCP (40+ years)
 - Asphalt-treated/Cement-treated
 - Lean concrete bases (Caltrans use)
 - Permeable bases treated

3 – Support Condition/Drainage Pavement Subsurface Drainage

- ➤ Need to pay more attention
- Rapidly remove water from beneath pavement structure
 - Stability vs. porosity: use lower permeability material
 - ~300 500 ft/day
- Drainable Pavement System
 - \circ Daylighted permeable baseO
 - Permeable base with edge drainage system

Top 3 Construction Considerations

- 1. Construction Quality
- 2. Concrete Management from plant to joint sawing
- 3. Contractor Process Control

GOOD CONSTRUCTION STARTS WITH GOOD SPECS, PREFERABLY END RESULT SPEC

1 - Construction Quality?

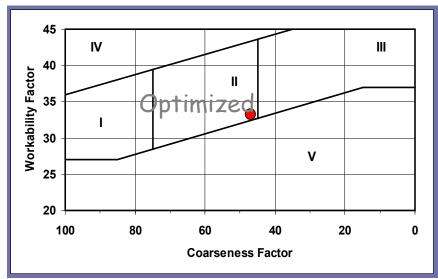
- For construction projects, achieving quality equates to conformance to requirements
 - Requirements need to be <u>well defined</u>, can be <u>measured</u>, and are <u>not arbitrary</u>
- Quality must be built into a project. It is not a hit or miss proposition.

•Owner <u>should not</u> <u>expect</u> more than what is specified

•Contractor <u>may not</u> <u>deliver</u> more than what is specified

1 - Construction Quality?

<u>Poor Design/Quality Construction vs. Good</u> <u>Design/Poor Construction</u>

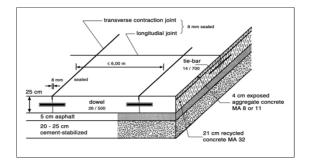

A poorly designed pavement but well constructed will outlast a well designed pavement but poorly constructed

> *Ray Rollings Retired, Corps of Engineers*

2 – Concrete Management Typical US Paving Concrete Mixture

- Minimum 28-day flexural strength ~ 650 psi
 Minimum fc ~ 4,000 psi
- Maximum w/cm ratio < 0.50 (<0.45 freeze areas)</p>
- > Well-graded aggregates (3+ bins) (Shilstone)
- Greener cementitious materials
- >Advanced admixtures (future of concrete)

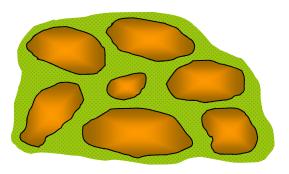
2 – Concrete Management Ideal Paving Concrete Mixture


➢ US vs. European approach (Freeways)

- US: ~650 psi MR & slab t = 12 to 14 in.
- \circ European: 750+ psi & slab t = 10 in.

Design for low paste - most concrete durability concerns are due to paste issues

Results in better slipform paving & better finishing


> 2-lift paving – Top: PCC⁽⁺⁾; Bottom: PCC⁽⁻⁾

2 – Concrete Management Cement Reduction for Paving Concrete

- Some simple changes to reduce cement use
 - Reduce paste content (most problematic component)
 - Use of optimized gradation & use larger maximum aggregate size
 - Reconsider minimum cementitious materials requirement (current: typically, 540 pcy); consider end product spec
 - Increase use of SCMs (flyash & slag)
 - Results in more durable concrete
 - Efficient use of waste products/by-products
 - Use Greener cements
 - Blended cements (ASTM C595)
 - Performance-based cements (ASTM C1157), including portland limestone cement
 - Non-portland cements under development

2 – Concrete Management The Joint Rot Issue

- Some joints are deteriorating faster than we would like (Peter Taylor)
- Some key findings
 - Paste saturation is a main culprit (f(freeze/thaw))
 - Need better quality concrete <u>w/cm < 0.40 & good in-situ</u> <u>air system & dense concrete & well-draining pavement,</u> <u>especially at the joint</u>

2 – Concrete Management From Placement to Curing

Proper consolidation

- \circ Use of smart vibrator system
- Check cores for proper consolidation
- Minimize tendency to over-finish surface
 - $_{\odot}$ Brings more paste to the surface
 - Surface does not have to be super-smooth
- Timely curing
 - A concern on many projects during hot weather
- Timely & proper joint sawing
 - Not an issue for transverse sawing, <u>but delay in longitudinal</u> <u>sawing can result in premature cracking</u>

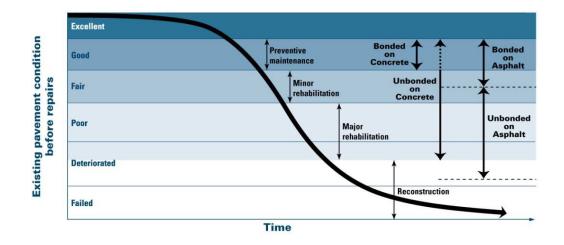
3 – Contractor Process Control

- Ideal contractor process control (QC) limits or eliminates placement of marginal concrete & use of marginal construction processes
 - Do not produce concrete if aggregate grad. not met
 - Reject concrete loads if requirements not met
 - Stop paving process if placement (edge slump) or consolidation issues
- Process control tests
 - Aggregate gradation & concrete mixture
 - Slab thickness
 - Concrete "slump" & air & density/consolidation
 - Profile (behind paver) & texture
 - Dowel bar alignment

3 – Contractor Process Control

- Ideal contractor process control
 - Material is rejected or process is stopped when the testing indicates that end product requirements are not being met
 - Minimizes placement of marginal or non-acceptable concrete

We accept that problems develop during construction, but it cannot be all day long, every day



Contractor must have his process under control!

Top 2 M&R Considerations

1. Timely Maintenance & CPR

M&R Overview

- We expect that current & future new concrete pavements will provide a low maintenance service life
- However, we still have to manage concrete pavements constructed more than 20 years ago & designed for ~20+ years. Many of these pavements have been in place for 40+ years.
- With timely & IMPROVED M&R strategies, we can continue to extend the service life of many of these older & FUTURE concrete pavements without resorting to "fracturing" & reconstruction
 - Economical & sustainability benefits

1 – Timely M&CPR Extend service Life of Existing Pavements

- With minimal effort and lower costs, we can extend service life of most concrete pavements without fracturing, resurfacing & reconstruction
- Well-performing CPR techniques are available to maintain ride/texture/structural capacity
 - FDR, DBR, grinding, concrete shoulder retrofit
 - Joint resealing ? topic of debate
- But, M&CPR must be done in a timely manner & done well (LIMIT FIXING THE FIX)

Achieving LLCP (60+ years) Many Small Steps => Big Gains (LLCPs) One Small Misstep => Premature Failure (PPCPs)

- > Optimizing long-life pavement designs
 - Thickness reduction; fewer dowel bars
 - Single cut joints; better bases/foundation
- Managing the construction processes & materials
- Effectively extending service life of existing pavements by timely M&CPR

