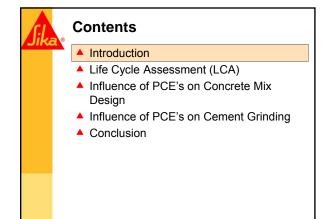
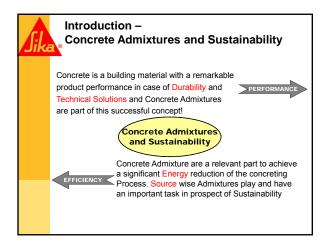

American Concrete Institute® Advancing concrete knowledge

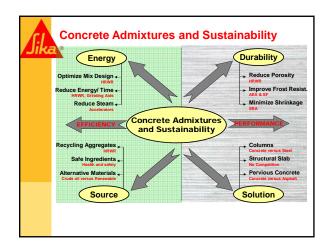
Innovations in Chemical Admixture Technology as Related to Sustainability, Part 2

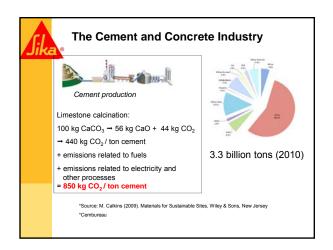
ACI Spring 2012 Convention March 18 – 21, Dallas, TX Ketan Sompura is a Product Manager and Key Project Manager working in the Concrete division of Sika Corporation. Dr. Sompura's job involves managing the concrete admixture's product line, providing technical and marketing support and coordinate efforts for key construction projects. Dr. Sompura is an active member on several committees at ACI and ASTM. He received his M.S and Ph.D in Civil Engineering from Clemson University, SC.

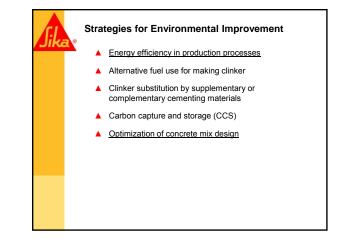
t.

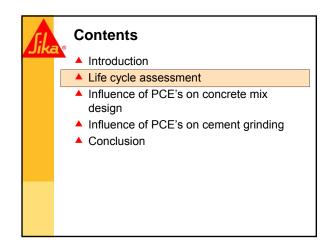


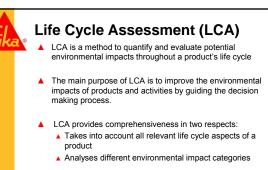


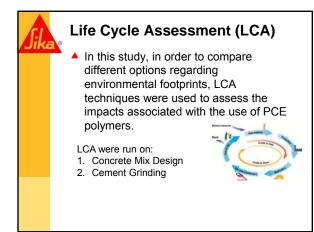


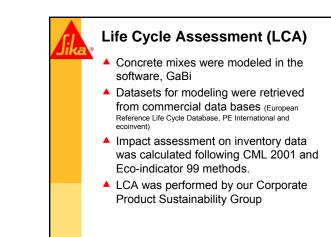

Contents

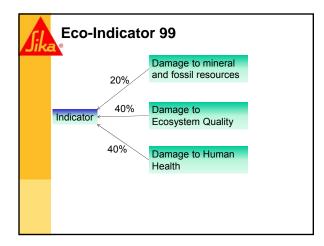

- Introduction
- ▲ Life Cycle Assessment (LCA)
- Influence of PCE's on Concrete Mix Design
- Influence of PCE's on Cement Grinding
- Conclusion

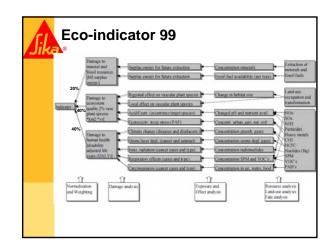


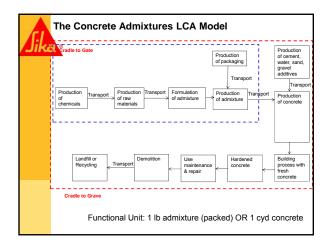


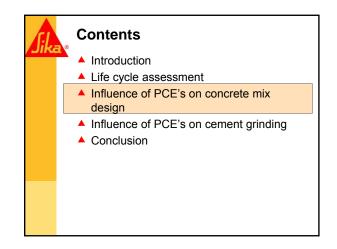


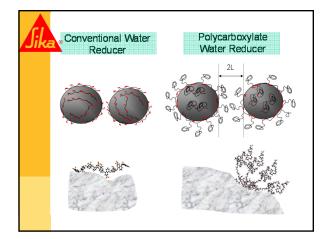


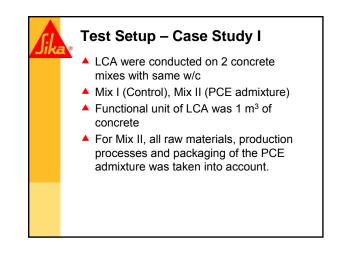


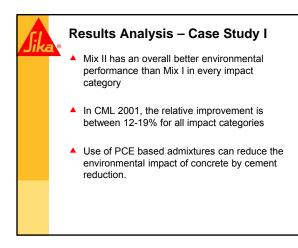





	CML 2001		
Jika	Impact Catagories Assessed	Meaning/Significance	
			1


Impact Catagories	Meaning/Significance
Assessed	
	Reduction in non renewable resources ie, fossil fuels, metals
potential	minerals etc
Acidification	Acidification of soil and water due to pollutents resuting in
Potential	low pH and damage to ecosystem
Eutrophication	Eutrophication means enrichment in nutrients. When effects
Potential	are undesirable it is considered a form of pollution
Global Warming Potential	Sum of emission of greenhouse gases
	HTP is calculated by adding the releases, which are toxic to humans, to three different media, i.e. air, water and soil
	The relative amount of degradation to the ozone layer that can be caused
	Indicator of ability of a VOC to contribute to photochemical ozone formation. Harmful for humans and vegetation.
, ,,	Quantity of energy drawn from various sources without any anthropogenic change



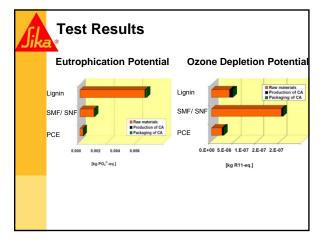


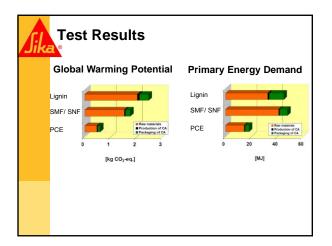
Mix Design	Quantity, kg/m (lbs/cyd)
	Mix I
Cement	350 (590)
Coarse Aggregates	1092 (1841)
Fine Aggregates	782 (1318)
Water	182 (307)
Admixture	-
W/Cm	0.52

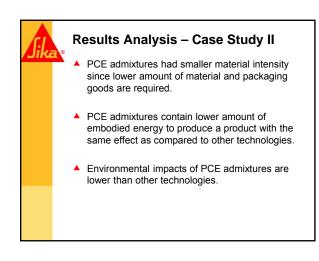
Jike	Energy	/ Den	and and stituent	d CO ₂	2 Emis	sion c	ontribut	tion	
				kg	MJ	kg CO ₂	% weight	% MJ	% CO ₂
		MJ/kg	kg CO ₂ /kg	per i	n ³ of cor	ncrete			
	Aggregates ¹	0.083	0.0048	1,092	90.64	5.24	46.4%	6.4%	1.7%
	Sand ¹	0.081	0.0048	728	59.0	3.5	31.0%	4.2%	1.1%
	Water ¹	0.01	0.001	182	1.8	0.2	7.7%	0.1%	0.1%
	Cement ²	3.59	0.85	350	1,256.5	297.50	14.9%	89.2%	97.1%
	Admixture ³	0	0	0.00	0.0	0.0	0.0%	0.0%	0.0%
				2,352	1,408	306	100%	100%	100%
	2)	WBCSD	/ of Carbon & Cement Sust nvironmental	ainability	Initiative 2	2009	h		

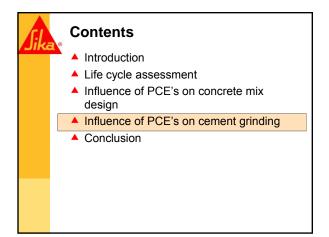
	Quantity, kg/	m3 (lbs/cyd)	Difference,
Mix Design	MixI	Mix II	kg/m3 (lbs/cyd
Cement	350 (590)	280 (472)	-70 (118)
Coarse Aggregates	1092 (1841)	1145 (1930)	+53 (89)
Fine Aggregates	782 (1318)	830 (1399)	+48 (81)
Water	182 (307)	146 (246)	-36 (61)
HRWR (PCE based)	-	3.36 (5.66)	-3.36 (5.66)
W/Cm	0.52	0.52	-
Concrete mixes I - same workability - same w/c		1900	

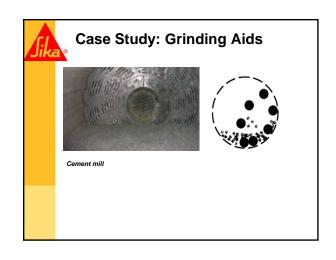
Abiotic Depletion (clements) [kg Sb-Equiv.] 0.0005 0.0004 11 Abiotic Depletion (fossii) [MJ] 1204.52 1057.60 11 Acidification Potential [kg SO2-Equiv.] 0.49 0.42 11 Eutrophication Potential [kg Phosphate-Equiv.] 0.08 0.07 1 Global Warming Potential (ND years) [kg CO2-Equiv.] 295.46 242.12 11 Human Toxicity Potential (HTP int) [kg DCB-Equiv.] 10.49 9.17 11 Ozone Layer Depletion Potential [kg Ethene-Equiv.] 0.01 0.01 11 Photochem. Ozone Creation Potential [kg Ethene-Equiv.] 0.05 0.04 1	Results – Life Cycle Assessment	e		
Abictic Depletion (elements) [kg Sb-Equiv.] 0.0005 0.0004 11 Abictic Depletion (fossii) [MJ] 1204.52 1057.60 11 Acidification Potential [kg S02-Equiv.] 0.49 0.42 11 Eutrophication Potential [kg S02-Equiv.] 0.08 0.07 1 Global Warming Potential (100 years) [kg C02-Equiv.] 295.46 242.12 11 Human Toxicity Potential (1TP int.) [kg DC3-Equiv.] 10.49 9.17 12 Ozone Layer Depletion Potential [kg T1-Equiv.] 0.01 0.01 11 Photochem. Ozone Creation Potential [kg Ethene-Equiv.] 0.05 0.04 11		Mivl	MixII	% Reductio
Abiotic Depletion (fossil) [MJ] 1204.52 1057.60 1: Acidification Potential [kg SO2-Equiv.] 0.49 0.42 11 Eutrophication Potential [kg Phosphate-Equiv.] 0.08 0.07 1 Global Warming Potential (100 years) [kg CO2-Equiv.] 295.46 242.12 11 Human Toxicity Potential (11P inf.) [kg DCB-Equiv.] 10.49 9.17 11 Ozone Layer Depletion Potential [kg E11-Equiv.] 0.01 0.01 11 Photochem. Ozone Creation Potential [kg Ethene-Equiv.] 0.05 0.04 11				19%
Acidification Potential [kg SO2-Equiv.] 0.49 0.42 11 Eutrophication Potential [kg Phosphate-Equiv.] 0.08 0.07 1 Global Warming Potential [Ng Phosphate-Equiv.] 0.88 0.07 1 Human Toxicity Potential (100 years) [kg CO2-Equiv.] 295.46 242.12 11 Human Toxicity Potential (HTP inf.) [kg DCB-Equiv.] 10.49 9.17 11 Ozone Layer Depletion Potential [g R11-Equiv.] 0.01 0.01 11 Photochem. Ozone Creation Potential [kg Ethene-Equiv.] 0.05 0.04 11				12%
Eutrophication Potential [kg Phosphate-Equiv.] 0.08 0.07 1. Global Warming Potential (100 years) [kg CO2-Equiv.] 295.46 242.12 1. Human Toxicity Potential (HTP inf.) [kg DCB-Equiv.] 10.49 9.17 1. Ozone Layer Depletion Potential [g R11-Equiv.] 0.01 0.01 10.01 Photochem. Ozone Creation Potential [kg Ethene-Equiv.] 0.05 0.04 1.				15%
Global Warming Potential (100 years) [kg CO2-Equiv.] 295.46 242.12 1/// Human Toxicity Potential (HTP Inf.) [kg DCB-Equiv.] 10.49 9.17 11 Ozone Layer Depletion Potential [g R11-Equiv.] 0.01 0.01 11 Photochem. Ozone Creation Potential [kg Ethene-Equiv.] 0.05 0.04 11		0.08	0.07	14%
Ozone Layer Depletion Potential [g R11-Equiv.] 0.01 0.01 11 Photochem. Ozone Creation Potential [kg Ethene-Equiv.] 0.05 0.04 11		295.46	242.12	18%
Photochem. Ozone Creation Potential [kg Ethene-Equiv.] 0.05 0.04 1:	Human Toxicity Potential (HTP inf.) [kg DCB-Equiv.]	10.49	9.17	13%
	Ozone Layer Depletion Potential [g R11-Equiv.]	0.01	0.01	16%
	Photochem. Ozone Creation Potential [kg Ethene-Equiv.]	0.05	0.04	12%
Primary energy demand (net cal. value) [MJ] 1481.00 1292.85 1	Primary energy demand (net cal. value) [MJ]	1481.00	1292.85	13%
Eco-Indicator 99 5.50 4.74 1	Eco-Indicator 99	5.50	4.74	14%

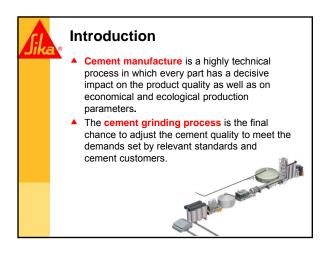


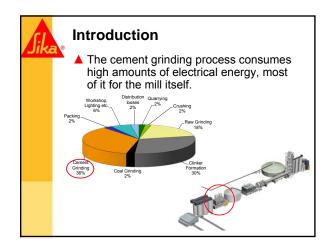

Case Study	I	: Mix	De	esign		
Mix Design		Qua	ntity			
		kg/m3	lb	s/cyd		
Cement		300		506		
Coarse Aggregates		1170		1972		
Fine Aggregates		780		1315		
Water		150		253		
W/Cm		0.5		0.5		
		Water Redu	iction	Dosa	ge to	acheive same
Admixture Type		Potentia	,%		wor	kability
				% by wt. o	f Cm	fl.oz/100 lbs of Cm
Water Reducer (Lignin)		5-10		1.1		14
High Range Water Reduce (Melamine/ Naphthalen		10-20		0.6		7.7
High Range Water Reduc	er					
(PCE based)		20-40		0.3		4.25
					Ref: M	S Thesis – L Doster

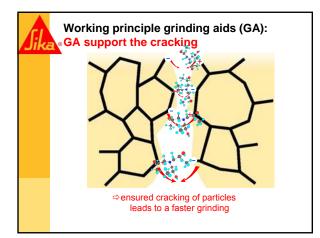


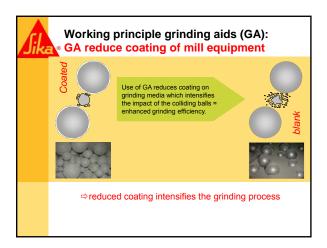

Case Study II

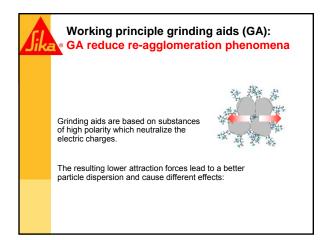

- Environmental impact categories assessed for 1m³ of concrete:
 - ▲ Eutrophication Potential
 - ▲ Ozone Depletion Potential
 - ▲ Global Warming Potential
 - Primary Energy Demand

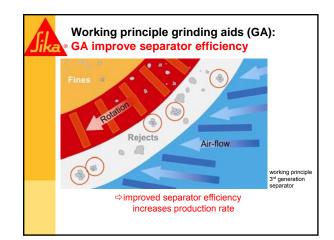


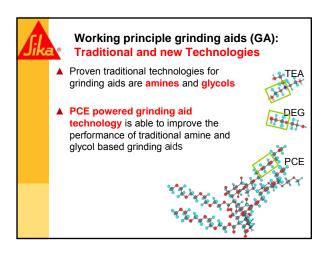


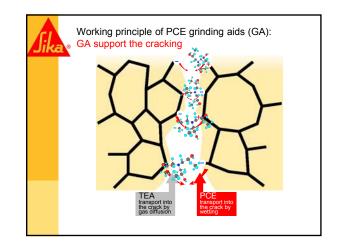


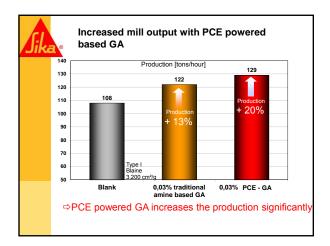


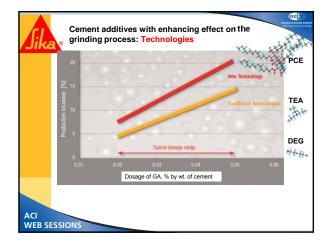


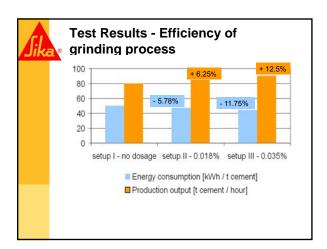


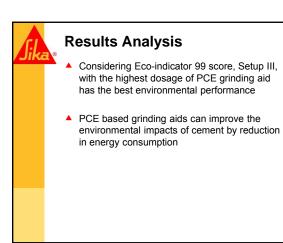


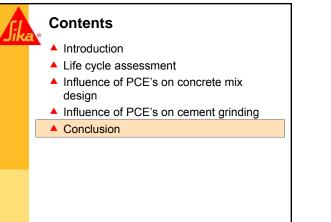


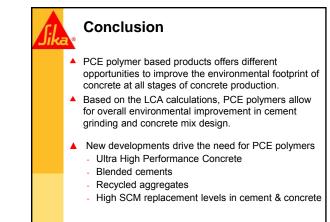





Jike	Higher mill output / reduced specific energy with PCE powered GA
	Specific energy consumption of mill drive without grinding aid (blank):
	$p = \frac{5.140 \text{ kW}}{108 \text{ t/h}} = 47,6 [\text{kWh/t}]$
	Specific energy consumption of mill drive with trad. Amine based grinding aid
	$p = \frac{5.140 \text{ kW}}{122 \text{ t/h}} = 42,1 [\text{kWh/t}]$
	Specific energy consumption of mill drive with PCE based GA
	$p = \frac{5.140 \text{ kW}}{129 \text{ t/h}} = 39.8 [\text{kWh/t}]$
	⇔PCE powered GA reduce the specific energy consumption significantly!




Test Set up


- LCA was conducted on 3 cement grinding setups.
- First setup was the Control (no grinding aid), the next two setups had a different dosage of the PCE powered grinding aid.
- Production output and energy consumption were measured for each setup.
- The functional unit of each LCA is one ton of ground cement.
- For the grinding aid, all raw materials, production and packaging processes had been taken into account

Impact Category	Setup I (No GA)	Setup I (0.018%
Eco-Indicator 99	100%	95%

