

ACI – Toronto, Canada The Economics, Performance and Sustainability of Internally Cured Concrete Part 3 of 3

March 23, 2011 Anton Schindler, Jason Weiss, Jiri Grygar

This Presentation is About

Optimizing the Sustainability of Concrete Through Internal Curing

Benjamin E. Byard PhD, University of Tennessee

John Ries PE, FACI, Expanded Shale, Clay and Slate Institute

Sustainability

□ What is it?

- Performance longevity of concrete
- Planning... build the right project
- Good design and engineering
- Balancing social, economical and environmental issues
- Paradigm shift in the way
 - We live and think
 - We see each other and our future

Our Title is Wrong

Optimizing the Sustainability <u>Performance</u> of Concrete Through Internal Curing

Brief Overview of Internal Curing

- □ Curing concrete from the inside out
- $\hfill\square$ It's not new
- Occurs naturally when using LWA or absorptive material
- What is new?

Better understanding of the IC process

The Problem

- □ Chemical shrinkage
- Autogenous shrinkage
 Hydration consumes the free water
 Capillary tensile stresses
- □ Shrinkage causes CRACKS problem
- FHWA bridge survey
 Early-age deck cracking
 Corrosion

The Solution - How Internal Curing Works

- □ It's simple...just say no to cracks...
- Add absorbent materials that releases water
 Maintains a high moisture levels
 - Release over 85% of absorbed water at RH 94%
- Absorbent materials
 LWA, SAP (diapers), RC-Aggregate, wood chips, etc.
- North America almost all have been ESCS-LWA

Durability and Performance That's Why Internal Curing is Used

- Increased cement hydration
- Improves SCM reaction because
 Higher and longer water demand
 Increased chemical and autogenous shrinkage
- Reduce self-desiccation and shrinkage
- Improved interfacial transition zone (ITZ)
 Greatly reduces the transport properties

Reduced Stress Development Another Reason Internal Curing is Used

Less crack potential

- Minimize the internal autogenous stresses
- Reduce modulus of elasticity
- Reduce coefficient of thermal expansion (CTE)
- In the Field
 - fewer cracks
 - increased crack spacing
 - decreased crack widths

During Construction

- Early-age robustness with respect to temperature changes
 - Reduced thermal stresses
- Reduced plastic and drying shrinkage cracking
- Improved workability and finishability
 less stickiness with SCM, (silica fume etc.)
- Internal curing starts as soon as the hydration demands more moisture...time of set

A Little History

- Internal curing dates back to 3000 B.C.
 Sumerians used LWA concrete to build Babylon.
 LWA concrete used extensively Romans period
- 1950's 60's Klieger, Cambell, Tobin & others
 "LWA concrete was more forgiving"...IC
- Early 1990's LWA used on Hibernia Offshore Platform to improve buoyancy
 Replaced 50% of coarse NWA with wetted ESCS LWA

National Institute of Science and Technology (NIST)

Around 2000 NIST started an extensive investigation into Internal Curing

Dale Bentz and many others involved

IC Documents

- NIST has over120 citations on IC on their website
 <u>http://ciks.cbt.nist.gov/lwagg.html</u>
- "Internal Curing: A 2010 State-of-the-Art Review," by Bentz and Weiss
- □ New ASTM C1761
 - Standard Specification for Lightweight Aggregate for Internal Curing of Concrete

Benefits of <u>internal curing on service life and life-cycle</u> <u>cost</u> of high-performance concrete bridge decks

Cusson, D., Z. Lounis, and L. Daigle, 2010.
 Case study for National Research Council Canada

Used analytical models predict the times to corrosion onset of damage failure of bridge decks

Increased service life with IC is a result of reduced early-age shrinkage cracking reduced chloride diffusion.

HPC Mixture Design (w/cm 0.42) bridge decks in Syracuse, NY									
		1	· · ·	1					
	Batch weights	Spencer St	\$/cy	Court St	Ş/cy				
	in pounds	Standard Mix	NWC	IC mix	IC				
	Cement	500		500					
	Fly Ash	135		135					
	Microsilica	40		40					
	Fine LWA \$.035/#	0	0	196	6.86				
	Fine Agg \$.0065/#	1130	7.34	782	5.08				
	Coarse Agg	1720		1720					
	Water	270		262					
	Total		7.34		11.94				
	(fob R-M Plant)				(+4.60)				

In-Place Concrete Cost - \$/cy										
In the example IC mixture \$ <u>4.60/</u> cy \$ <u>10/c</u>										
Bridges Water tanks Paving	\$400-500/cy \$300-375/cy \$170-200/cy	1.1% 1.3% 2.5%	2.4% 2.9% 5.4%							
If the entire structure is considered, IC is only about 1% more										

Embodied Energy Study - LWC In Steel Framed Buildings by Walter P Moore & Assoc 9/21/2012

- A representative 5-story office building in Modereate-seismicity, Charlotte, North Carolina
- $\hfill\square$ Overall the study found

Reduction in material quantities (less weight)
 Offset the energy to produce the ESCS LWA
 Lowered total embodied energy by 1 to 3%

- Since 2003, over 2 million yd³ of IC Normalweight concrete have been placed
- Includes 1.3 million yd³ of low slump pavements
 City streets and parking areas Dallas-FW area

Union Pacific Intermodal Facility Hutchins, Texas January of 2005

250,000 yd³ project with low slump IC pavement Visual inspections at 6 yrs minuscule plastic or drying shrinkage cracks

Texas State Highway SH 121

- □ SH -121, Dallas, Texas, 2006
- □ 1300 cubic yards, 5 miles
- □ Continuously Re-enforced Concrete Pavment (CRCP)
- Class P (3500 psi or 570 psi flex at 7d)

Sieve				% Passing			
Analysis	Sieve Size	Coarse agg. 1	Coarse agg. 2	Lightweight agg.	Fine agg.	Combined	Combined % Retained
	2*	100				100	0
Aggregate	1 1/2*	99.3	100			99.8	0.2
Grading	1.	80	99.3	-		95.2	4.6
SR-121	3/4*	51.8	85.8			84.3	10.9
	1/2*	34	48.3	100		67.6	16.7
	3/8*	12.1	19.8	99.8	100	5Z.9	14.6
Only 300 lbs	no. 4	1.3	4.2	58.9	97.7	38	14.9
$(5 \text{ ft}^3/\text{yd}^3)$	no. 8	0	1.4	15.5	87.9	27.1	10.9
Intermediate	no. 16		o	4.1	75.6	21.4	5.7
intermediate	no. 30			0	58.9	16.2	5.2
LWA	no. 50			-	22.4	6.2	10
	no. 100				2.6	0.7	5.4
	no. 200				0.3	0.1	0.6
	pan						0.1

The State of Indiana

Five miles northeast of Bloomington

- Two bridges replacement about ¹/₄ mile apart
 Pre-stressed concrete box beams
 - Composite reinforced concrete deck
- 8" thick centerline and 4 1/2" thick edge

SUMMARY-The Goal of Internal Curing

- Reduce or eliminate cracking
- □ Provide additional internal curing water
- Keep the hydrating cementitious paste saturated and autogenous stress free

Summary – Internal Curing Helps

- □ Concrete achieve its maximum potential
- Extend the service life of concrete
- Improve the economical, environmental, and social aspects of the concrete industry
- That supports the sustainability of concrete

All Great Truth Begin as Blasphemy And One Great Truth Is

Concrete Performs Better with Internal Curing

Thank You

🗆 In general

- 100 # of ESCS generates about 18 lbs of CO₂
- 18 # of cement generate about 18 lbs of CO₂
- Evaluating carbon footprint of a concrete mixture
 ESCS CO₂
 - Potentially less cement CO₂ from better hydration
 - Increased SCM use