

Photocatalytic Concrete

- Concrete that contains titanium dioxide (TiO₂)
 Sunlight accelerates natural oxidation to decompose air pollutants
- TiO_{2:} non-toxic, abundant, chemically stable, semiconductor
 Used in cosmetics, food products, toothpaste & skim milk
 Used in anti-fog, anti-bacterial, self-cleaning products and water treatment since early 70's
- Researchers have reported a wide range of NO_x degradation rates from 50 to 350 mg/day/m²
- Photocatalytic concrete the area of a soccer field has the capability to remove emissions equivalent to approx 190,000 car-km/yr (60 mg/day/m² NO_x)
- Potential to reduce other airborne pollutants such as SO₂, particulate matter (PM10, PM2.5) in addition to NO_x

MTO Objectives

- · The greenest roads in North America
- Assess photocatalytic concrete material properties
 - Academic partner: University of Toronto
- Work in partnership with environmental arm of Ontario government to identify air quality improvements as a result of use of photocatalytic concrete in a noise barrier installation
- Assess viability of larger-scale field installation

Photocatalytic Noise Barrier Field Trial

- Part of a short noise barrier replacement project
- One of North America's busiest highways--450,000 AADT

Air Monitoring Protocol for Field Trial

- Two-year NO_x field air quality monitoring using Airpointer® units

 Four to six 3-week sampling campaigns
- Incorporate cement supplier guidelines for measuring NO_x
- Two units monitor air quality simultaneously;
- One unit in close proximity to the wall,
- Other unit two metres from the wall outside side zone of influence of the photocatalytic process.
- Difference in NO_x readings indicates impact of photocatalytic process

Discussions – Air Monitoring

- Sensors recorded constant wind presence parallel to wall (200° to 230°) possibly traffic induced
- In comparison the wind speed of continuous flow rate (3 L/min) of laboratory test is (0.7 km/hr Less sun than expected
- Lower than expected background NO_x concentrations
- Research indicates contact time, wind direction, light intensity, high relative humidity are significance factors in effectiveness of photocatalytic mechanism
- (e.g. NO \rightarrow NO₂ \rightarrow NO₃ \rightarrow Ca(NO₃)²) Self-cleaning & field durability to be assessed after a significant exposure period

- · On site test box (Beeldens, Belgian Road Research Centre)
 - UV-transparent lid
 - NO-concentration
 - Controlled relative humidity & air flow
- Nitrate collection
 - Nitrates generated from photocatalytic reaction washed off panels (mg/l)
 - Analyzed by spectrophotometry and by ion chromatography

Conclusions – Air Monitoring Interim results; unable to detect air quality improvement (NO_x reduction) in the vicinity of the photocatalytic concrete barrier · Orientation, wall geometry, distance from NO_x source, total exposed surface area, contact time and surface texture have impacted the effectiveness of the

photocatalytic process or its measurement E.g. A ribbed photocatalytic barrier wall may be more effective

Changes to the air monitoring procedures may increase ability to detect air quality improvement

Proposed Revisions to Air Monitoring

- Monitor air quality on back of wall
 - Sunny side greater light intensity
 - No traffic-induced wind
- Install baffles

 Increase contact time
- Move sampling port as close as possible to wall (0.05 m)

Laboratory Assessment of Photocatalytic Concrete (University of Toronto)

- Research being carried out under MTO Highway Infrastructure Innovation Funding Program (HIIFP)
- Compared mechanical, transport and durability properties of
- four concrete mixes:
- 100 % "General Use" (GU)* cement
- GU cement with 25% ground granulated blast furnace slag (GGBFS)
 100% Photocatalytic (PH) Cement
- PH cement with 25% GGBFS
- Batching parameters
- Total cementitious materials 430 kg/m3
 0.42 fixed water cementitious ratio
- Air entraining admixture adjusted to achieve air in plastic concrete between 5.5% and 7.0%
- between 5.5% and 7.0%
 No other admixtures used to reduce risk of interaction with the photocatalytic mechanism
- * GU (CSA designation) is comparable to ASTM Type I

Interim Results of Laboratory Study

Test Method	GU	GU 25S	PH	PH25S
28-day Compressive Strength (normalized)	1.0	+3%	-5%	-1%
Slump at 0.43 w/cm (mm)	210	160	70	75
Air Plastic Concrete (%)	6.8%	5.7%	5.6%	5.6%
Air in Hardened Concrete (%)	6.5%	5.1%	5.2%	5.3%
Air Spacing Factor (mm)	0.13	0.14	0.16	0.15

Interim Results of Laboratory Study

Property Test Method	GU	GU25S	PH	PH25S	
Ultrasonic Pulse Velocity (m/s) Initial Sorptivity @ 56 days (mm/sec ^{1/2})	4700 4900				
ASTM C1585	14 18 x10-4				
Durability Factor (%) ASTM C666	97%	96%	96%	92%	
Rapid Chloride Permeability @ 28 days (Coulombs) ASTM C1202	3900) 1700	3900	1800	
Resistance to Salt Scaling finished surface (kg/m ²) MTO LS-312	0.2	2 0.3	2.0	2.6	

Interim Conclusions – Laboratory Study

- Physical properties of photocatalytic concrete appear comparable to conventional concrete with some exceptions:
 - Higher water demand for same slump
 - Higher air entraining admixture dosages for same air content
 - Requires admixture to be checked for compatibility with photocatalytic cement
 - May be more susceptible to salt scaling but freeze-thaw resistance appears comparable
- Investigate suitability of high range water reducer (HRWR) for photocatalytic concrete
 - Comparison of HRWR modified PH mixes is underway

Interim Overview

- Field air quality monitoring showed no reduction in NO_x but measurement and methods may not have been optimum
 - Changes proposed for next field air quality monitoring campaign
 - Investigating other methods for measuring the effectiveness photocatalytic concrete installation
- Plastic and hardened concrete properties are comparable
 - Potential sensitivity to scaling is being investigated further

Acknowledgement

Project Partners

University of Toronto Ministry of the Environment Durisol (Armtec) Essroc Italcementi

