

Alma L. Reyes, Latin America Technology Manager, The Euclid Chemical Company, Mexico City, Mexico.

ACI
WEB SESSIONS

Contents

- * Component G
- * Industrial floor durable solution through Shrinkage Compensated Concrete
- * Mexico City Metropolitan area elevated deck highway considering shrinkage control concrete

Expansion mechanism for shrinkage control in concrete

- * Ettringite formation
 - * Expansive cements K, M and S
 - * Component K : Calcium Sulphoaluminate component
- * Portlandite formation
 - * Component G: Calcium Oxyde

Availability in Mexico: Component G and Component K

Concrete mix design considerations for shrinkage control

- * Typical low shrinkage mix design:
- * w/cm ratio
- * Aggregate top size
- * Paste volume (Cementitious and water amounts)
- * Joint spacing design
- * Regional aggregate influence
- * Regional cementitious composition influence
- * Expansive component quality control
- * Weather influence on service life

Concrete mix materials

- * Cement
 - * Composed cements and fineness
 - * Prone to shrink more?
 - * Local testing to select the cement that produces the less shrinkage possible
 - * International recommendations to be adjusted according to local job conditions

Concrete mix materials

- * Aggregate
 - * Nature fine particles can produce a strong influence on shrinkage
 - Maximum aggregate size 25 or 38 mm, dense, with less than 1% of contaminants and specific gravity >2,5 g/cm³
 - * Continuous grading
 - * Maximum coarse/fine aggregate ratio (~60/40)

Concrete mix materials

- * Admixtures and additions
 - * Water reducing (ASTM C 494 Type D)
- * Superplasticizers (ASTM C 1017 Type I)
- * Air detrainer
 - * Less than 3%
- * Cement stabilizer
- * Expansive component G

Distribution Center requirements

- * Project: 54 000 m²
- * Slab thickness = 15 cm
- * Mechanical properties:
 - * Compressive strength 28 MPa at 28 days
- * Jointless floor surface from 1045 to 1567 m²

Joint spacing benefits through
Shrinkage Compensated Concrete

Distribution Center mix design

- * Mexican Cement Type CPO 30 RS BRA BCH
- * Maximum aggregate size: 38 mm
- * Less than 180 L/m³ of water
- * Slump: 12 cm
 - * Keep workability for more 60 min (use of superplastizicers)
- * Air content: 1.7 to 2.2 %
- * Initial set time: 6 to 7 hours
- * Length change ASTM C 878:
- * Quality control for delivery: 700 µm at 24 hours
- * Finish operations similar to conventional industrial floors

SSD Mix design per m³

Cement CPC 40	310	kg
Coarse agg 5-40 mm (Basalt)	1094	kg
River sand	744	kg
Water	170	L
HRWR Eucon 37	2.2	L
Component G Conex M	29	kg

Highlights

- * 42 pours
- * 5 years in service life operation with no interruptions
- * Cement content strongly influences expansion
- * ASTM C 878 Lenght change history with local materials before the project design
- * Owner would invest on this technology again

Elevated deck highway

- * Key infrastructure project to help the transit of the Mexico City and surrounding metropolitan area that runs as an elevated deck on top of the current highway path
 - * Various stages from 2004 up to date

Elevated deck highway

- * Specialty concrete was required for different structural applications:
 - * Post-tension girders and columns
 - * Precast boards
 - * Foundations
 - * Girder-column conections
 - * Slab support layer

Post-tension precast girders and columns requirements

- * Compressive strength
 - * 60 MPa at 28 days (f'c)
 - * 48 Mpa at 24 hours (80% f'c)
- * Slump flow
 - * 700 to 740 mm
- * Placing method: pump

Cement Type CPC 40 (R)	400	kg
Coarse agg 5-12 mm (limestone)	1017	kg
River sand	720	kg
Water	181	L
Water reducing admixture	1,8	L
HRWR Eucon 37	1,0	L
Component G	10	kg

Highlights

- * Mexico infrastructure plans have recognized the importance on the use of specialty concrete technology to overcome the current challenges of Civil Engineering
- * Contractors, concrete ready-mix, precast and admixture companies have given an important step towards concrete technology application with stricter requirements to come

