Alma L. Reyes, Latin America Technology Manager, The Euclid Chemical Company, Mexico City, Mexico. ACI WEB SESSIONS #### Contents - * Component G - * Industrial floor durable solution through Shrinkage Compensated Concrete - * Mexico City Metropolitan area elevated deck highway considering shrinkage control concrete # Expansion mechanism for shrinkage control in concrete - * Ettringite formation - * Expansive cements K, M and S - * Component K : Calcium Sulphoaluminate component - * Portlandite formation - * Component G: Calcium Oxyde Availability in Mexico: Component G and Component K # Concrete mix design considerations for shrinkage control - * Typical low shrinkage mix design: - * w/cm ratio - * Aggregate top size - * Paste volume (Cementitious and water amounts) - * Joint spacing design - * Regional aggregate influence - * Regional cementitious composition influence - * Expansive component quality control - * Weather influence on service life #### Concrete mix materials - * Cement - * Composed cements and fineness - * Prone to shrink more? - * Local testing to select the cement that produces the less shrinkage possible - * International recommendations to be adjusted according to local job conditions #### Concrete mix materials - * Aggregate - * Nature fine particles can produce a strong influence on shrinkage - Maximum aggregate size 25 or 38 mm, dense, with less than 1% of contaminants and specific gravity >2,5 g/cm³ - * Continuous grading - * Maximum coarse/fine aggregate ratio (~60/40) #### Concrete mix materials - * Admixtures and additions - * Water reducing (ASTM C 494 Type D) - * Superplasticizers (ASTM C 1017 Type I) - * Air detrainer - * Less than 3% - * Cement stabilizer - * Expansive component G ### Distribution Center requirements - * Project: 54 000 m² - * Slab thickness = 15 cm - * Mechanical properties: - * Compressive strength 28 MPa at 28 days - * Jointless floor surface from 1045 to 1567 m² Joint spacing benefits through Shrinkage Compensated Concrete #### Distribution Center mix design - * Mexican Cement Type CPO 30 RS BRA BCH - * Maximum aggregate size: 38 mm - * Less than 180 L/m³ of water - * Slump: 12 cm - * Keep workability for more 60 min (use of superplastizicers) - * Air content: 1.7 to 2.2 % - * Initial set time: 6 to 7 hours - * Length change ASTM C 878: - * Quality control for delivery: 700 µm at 24 hours - * Finish operations similar to conventional industrial floors ## SSD Mix design per m³ | Cement CPC 40 | 310 | kg | |-----------------------------|------|----| | Coarse agg 5-40 mm (Basalt) | 1094 | kg | | River sand | 744 | kg | | Water | 170 | L | | HRWR Eucon 37 | 2.2 | L | | Component G Conex M | 29 | kg | ## Highlights - * 42 pours - * 5 years in service life operation with no interruptions - * Cement content strongly influences expansion - * ASTM C 878 Lenght change history with local materials before the project design - * Owner would invest on this technology again ### Elevated deck highway - * Key infrastructure project to help the transit of the Mexico City and surrounding metropolitan area that runs as an elevated deck on top of the current highway path - * Various stages from 2004 up to date ### Elevated deck highway - * Specialty concrete was required for different structural applications: - * Post-tension girders and columns - * Precast boards - * Foundations - * Girder-column conections - * Slab support layer # Post-tension precast girders and columns requirements - * Compressive strength - * 60 MPa at 28 days (f'c) - * 48 Mpa at 24 hours (80% f'c) - * Slump flow - * 700 to 740 mm - * Placing method: pump | Cement Type CPC 40 (R) | 400 | kg | |--------------------------------|------|----| | Coarse agg 5-12 mm (limestone) | 1017 | kg | | River sand | 720 | kg | | Water | 181 | L | | Water reducing admixture | 1,8 | L | | HRWR Eucon 37 | 1,0 | L | | Component G | 10 | kg | ## Highlights - * Mexico infrastructure plans have recognized the importance on the use of specialty concrete technology to overcome the current challenges of Civil Engineering - * Contractors, concrete ready-mix, precast and admixture companies have given an important step towards concrete technology application with stricter requirements to come