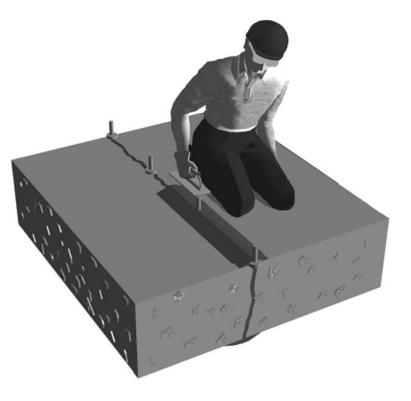


ACI RAP 1 STRUCTURAL CRACK REPAIR BY EPOXY INJECTION OCTOBER 16, 2018 SCOTT DISTEFANO

BUILDING TRUST

AGENDA

- Introduction
- Purpose of Repair
- When to Use
- Proper Preparation
- Selecting Materials
- Equipment
- Safety
- Repair Procedure
- Evaluation



INTRODUCTION

Life, Death, Taxes and Cracks!

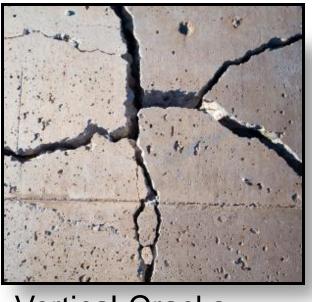
FIELD GUIDE TO CONCRETE REPAIR APPLICATION PROCEDURES

Structural Crack Repair by Epoxy Injection

INTRODUCTION

- Causes may include:
 - Drying shrinkage;
 - Thermal contraction or expansion;
 - Settlement;
 - Lack of appropriate control joints;
 - Overload conditions that produce flexural, tensile, or
 - Shear cracks in concrete
 - Restraint of movement

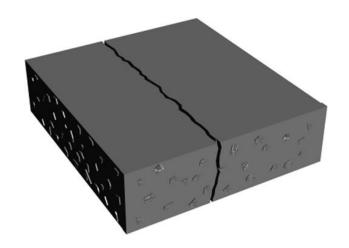
PURPOSE OF REPAIR


- Restore structural integrity
- Resist moisture penetration (0.002 in. width and greater)

WHEN TO USE INJECTION METHOD

- Horizontal, Vertical & Overhead
- Must determine:
 - Cause
 - Need

Vertical Cracks



Horizontal Cracks

PROPER SURFACE PREPARATION

- ½" wide on each side
- Wire brush
 - Grinders may fill crack with dust
- Pressure washer
 - Allow to dry
 - Moisture tolerant epoxy
- Compressed Air (oil free)
- Power Vacuums
- "V" groove or notch

PROPER SURFACE PREPARATION

SELECTING THE CORRECT MATERIALS

- Viscosity is very important
 - Width 0.010" or smaller = 500 cps or less
 - Water = 1 cps
 - Syrup = 3000 cps
 - Larger cracks may use higher medium to gel viscosity

SELECTING THE CORRECT MATERIALS

- ASTM C881 identifies basic criteria
- Concrete >12" may require
 - Increased working time
 - Lower viscosity
 - Depending on width
- Other considerations include:
 - Modulus of elasticity (rigidity);
 - Working life;
 - Moisture tolerance;
 - Color
 - Compressive, flexural, and tensile strengths.

Table 1—ASTM C 881 requirements for epoxy resins that are used to bond hardened concrete to hardened concrete

	Type I*	Type IV [†]
Viscosity, centipoise	•	
Grade 1 (low-viscosity), maximum	2000	2000
Grade 2 (medium-viscosity), minimum	2000	2000
Maximum	10,000	10,000
Consistency, in.		
Grade 3 (non-sagging), maximum	1/4	1/4
Gel time, min.	30	30
Bond strength, minimum, ps	i	
2 days, moist cure [‡]	1000	1000
14 days, moist cure	1500	1500
Absorption, 24 h maximum, %	1	1
Heat deflection temperature		
7 days minimum, °F	_	120
Linear coefficient of shrinkag	je	
On cure, maximum	0.005	0.005
Compressive yield strength	•	
7 days minimum, psi	8000	10,000
Compression modulus, minimum, psi	150,000	200,000
Tensile strength, 7 days minimum, psi	5000	7000
Elongation at break, minimum, %	1	1

*Type I: for use in non-load-bearing applications.

[†]Type IV: for use in load-bearing applications.

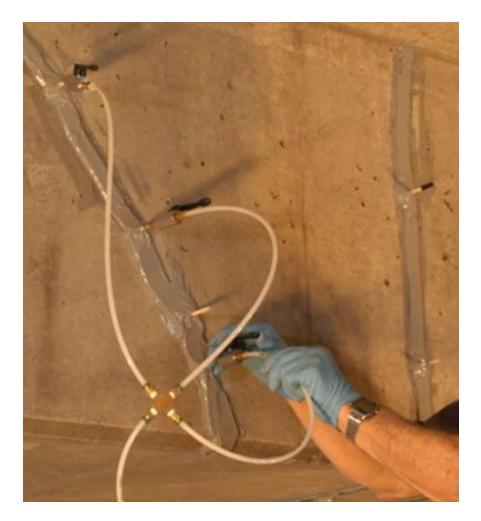
^{*}Moist-cured systems should be tested by assembling the sections to be bonded before immersing in water.

Source: ASTM C 881, Standard Specification for Epoxy-Resin-Base Bonding Systems for Concrete.

PROPER EQUIPMENT

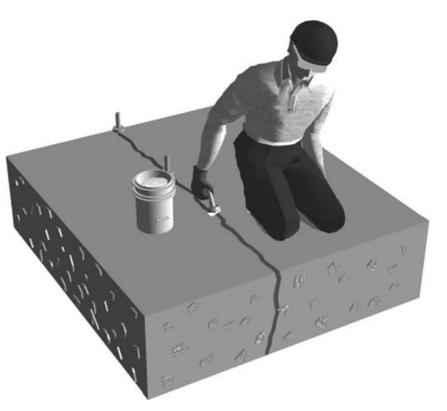
- High & Low pressure is acceptable
 - Injection ports
 - Wire brush
 - Air guns;
 - Hand-actuated delivery systems;
 - Spring-actuated capsules
 - Balloon-actuated capsules.

SAFETY CONSIDERATION


- User must document safety practices:
 - Having Material Safety Data Sheets (MSDS) available on site;
 - Wearing protective clothing and protective eyewear
 - Wearing rubber gloves or barrier creams for hand protection
 - Having eye wash facilities available;
 - Wearing respirators where needed;
 - Providing ventilation of closed spaces;
 - Secured storage of hazardous materials;
 - Having necessary cleaning materials on hand; and
 - Notifying occupants of pending repair procedures.

- 1. Port Installation
- Surface mounter or Socket
- May be connected with manifold

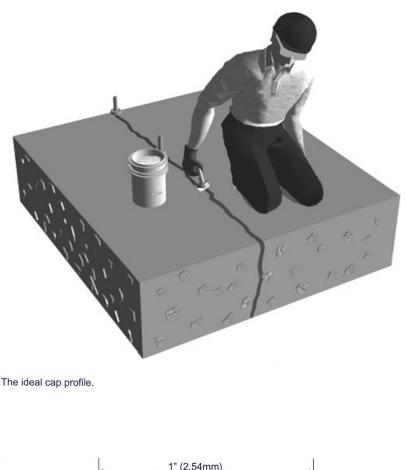
How far apart do we space ports?

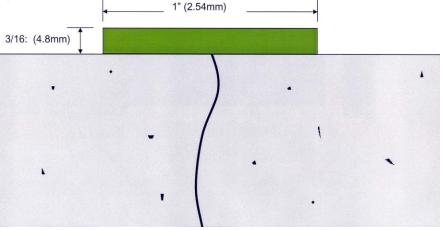


- 1. Port Installation
- Surface mounter or Socket
- May be connected with manifold

How far apart do we space ports?

As far apart as possible **but no closer than 6"** (we can assume a 3" travel of resin in direction). **On Average 8" Thinned slabs may allow for 12"**

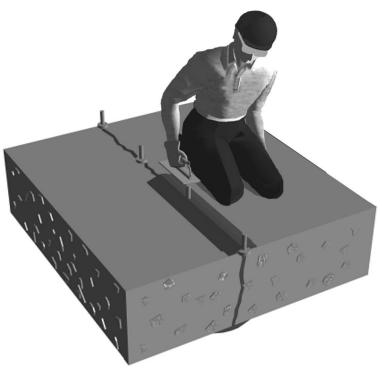


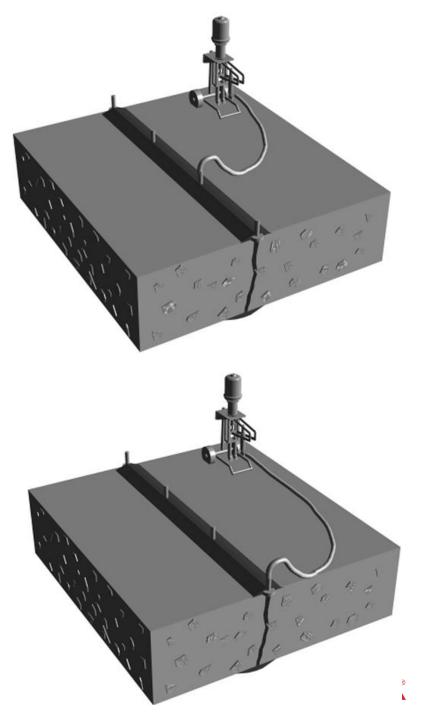

1. Port Installation

- 2. Install the Capseal
- Must install on both sides of crack
- "More is better"
- Material Selection Criteria:
 - Non-sag consistency (for vertical or overhead)
 - Moisture-tolerance
 - Working life
 - Rigidity (modulus of elasticity).

- 2. Install the Capseal
- Mark largest portion of crack
- Pay close attention to:
 - Use only materials that haven't exceeded their shelf life;
 - Accurate batching of components
 - Small batches to keep material fresh and dissipate heat;
 - Port spacing
 - Consistent application of the material (1 in. wide x 3/16 in. thick [25 x 5 mm]) over the length of the crack.

- 2. Install the Capseal
- Mark largest portion of crack
- Pay close attention to:
 - Use only materials that haven't exceeded their shelf life;
 - Accurate batching of components
 - Small batches to keep material fresh and dissipate heat;
 - Port spacing
 - Consistent application of the material (1 in. wide x 3/16 in. thick [25 x 5 mm]) over the length of the crack.


2. Install the Capseal


2. Install the Capseal

- 3. Inject the Epoxy
- Double check cap seal and ports
- Mix epoxy according to manufacturer
- For horizontal start at widest point
- For vertical start from bottom
- Continue until refusal, cap immediately

- 3. Inject the Epoxy
- Double check cap seal and ports
- Mix epoxy according to manufacturer
- For horizontal start at widest point
- For vertical start from bottom
- Continue until refusal, cap immediately
- If hairline crack, try increasing pressure to 200 psi for 5 min. (must be managed to prevent blowout)

- 4. Remove Ports & Capseal
- Optional step
- May use:
 - Heat
 - Chipping
 - Grinding
 - Other mechanical means

4. Remove Ports & Capseal

HOW TO CHECK THE REPAIR

- 1. Test cores
 - Engineer should determine location to avoid high stress areas
 - ASTM C42 compressive & split tensile
 - Visual evaluation for penetration depth
 - Must patch with expansive high strength grout (epoxy or cement based)

HOW TO CHECK THE REPAIR

1. Test cores

HOW TO CHECK THE REPAIR

- 2. Nondestructive evaluation
 - Impact Echo
 - Ultrasonic pulse velocity
 - Spectral analysis of surface waves

SOURCES

ACI Committee 224, 1993, "Causes, Evaluation, and Repairs of Cracks in Concrete Structures (224.1R-93)," American Concrete Institute, Farmington Hills, Mich., 22 pp. ACI Committee 364, 1994, "Guide for Evaluation of Concrete Structures Prior to Rehabilitation (364.1R-94)," American Concrete Institute, Farmington Hills, Mich., 22 pp. ACI Committee 503, 1998, "Use of Epoxy Compounds with Concrete (ACI 503R-93 (Reapproved 1998))," American Concrete Institute, Farmington Hills, Mich., 28 pp. ACI Committee 546, 1988, "Guide for Repair of Concrete Bridge Structures (546.1R-80 (Reapproved 1988))," American Concrete Institute, Farmington Hills, Mich., 20 pp. ACI Committee 546, 1996, "Concrete Repair Guide (546R-96)," American Concrete Institute, Farmington Hills, Mich., 41 pp. ASTM C 881-90, 1990, "Standard Specification for Epoxy-Resin Based Bonding Systems for Concrete," ASTM International, West Conshohocken, Pa., 5 pp.

Emmons, P. H., 1994, *Concrete Repair and Maintenance Illustrated*, R. S. Means Co., Inc., Kingston, Mass., 300 pp. "Guide for Verifying Performance of Epoxy Injection of Concrete Cracks," 1998, *ICRI Technical Guideline* No. 03734.

Murray, M. A., 1987, "Epoxy Injection Welds Cracks Back Together," *Concrete Repair*, V. 3. Promboon; Y.; Olsen, L. D.; and Lund, J., 2002, "Nondestructive Evaluation (NDE) Methods for Quality Assurance," *ICRI Bulletin*, V. 15, No. 1, Jan.-Feb., pp. 12-16. "State-of-the-Art Adhesives for Concrete Construction," 1998, *Construction Canada Magazine*, May-June. Trout, J. F., 1998, *Epoxy Injection in Construction*, The Aberdeen Group, 80 pp.

THANK YOU FOR YOUR ATTENTION!

QUESTIONS?

BU