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The Problem
• Some concrete pavements 

located in cold climates have 
been experiencing premature 
joint deterioration.

• Once initiated, the damage 
progresses aggressively and 
can result in severe damage to 
the pavement.

• Various contributing factors 
have been identified in the 
previous studies.
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The Problem

• Most deterioration 
taking place at or 
near:
 transverse joints 

 longitudinal joints 

 Intersection of 
transverse and 
longitudinal joints
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What may be causing the distress?

• Number of potential 
causes suggested

 Poor materials selection, 

 Poor mixture 
proportioning

 Poor construction 
practices

 D-cracking

 Alkali-reactive materials

 improper timing of sawing 
(either early or late)

 Uncracked joints
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What may be causing the distress?
• Number of potential 

causes suggested

 slab warping

 joint spacing 

 accumulation of 
incompressibles in 
joints

 Joint sealing and 
sealant selection

 Poor drainage

 Local saturation of 
concrete

 Deicing practices
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Mixture proportions (both limestone and dolomite)

• 0.42 w/cm, (ASTM C94 for mixing procedure)

Mixture 

designation

PC series FA series

Limestone Dolomite Limestone Dolomite

w/cm 0.42 0.42 0.42 0.42

Cement 515 586 440 469

Fly ash - - 110 117

Water 217 246 227 246

Fine aggregate 1500 1303 1420 1303

Coarse aggregate 1700 1780 1700 1780

AEA (fl oz) 0.9 1.5 0.7 1.15

WRA (fl oz) 2.5 3.0 1.5 2.85
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Exposure conditions

Temperature 
(°F/°C)

Duration (24hrs
for 1 cycle)

Wet 39.2°F (4°C) 16±1hr

Dry 73.4°F (23°C) 8±1 hrs at 50% RH

Freeze -0.4°F(-18°C)
1 hr of cooling, 11hrs 

at -0.4°F (-18°C)

Thaw 71.6°F (22°C)
1 hr of heating, 11hrs 

at 71.6°F (22°C)
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Deicers

• For test F/T, 40% reduction in concentration of deicers to 
ensure freezeability

• Companion specimens –FT and WD in DIW

• Control specimens – stored in a standard curing room 

W/D F/T

NaCl 23.3 % 14.0 %

MgCl2 25.0 % 15.0 %

CaCl2 28.0 % 17.0 %
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• Drying :

 8 hrs at 23°C (73.4°F) at 50% RH

• Wetting

 16 hrs at 4°C (39.2°F)

Wetting and Drying Cycles
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Type I specimens after W/D cycles

in 25% MgCl2 & 28% CaCl2 solutions

210 W/D cycles in 25% MgCl2

168 W/D cycles in 28% CaCl2
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Type I specimens after 168 W/D cycles

in 28% CaCl2 solution
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Fly Ash specimens after W/D cycles

in 25% MgCl2 & 28% CaCl2 solution

168 W/D cycles in 28% CaCl2 210 W/D cycles in 25% MgCl2
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PC-CaCl2-W/D-350cycles PC-MgCl2-W/D-350cycles PC-NaCl-W/D-350cycles PC-DIW-W/D-350cycles 

    

FA-CaCl2-W/D-350cycles FA-MgCl2-W/D-350cycles FA-NaCl-W/D-350cycles FA-DIW-W/D-350cycles 

 

Visual appearance of the specimens (W/D)
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• Freezing 

 1 hr of cooling and 11 hrs of 

freezing at -0.4°F (-18°C)

• Thawing

 1 hr of heating and 11 hrs at 

71.6°F (22°C)
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F/T exposure - Type I Specimens

extensive surface 
deterioration (similar to 
that  observed during W/D 
exposure)
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F/T Exposure - Type I & Fly Ash Specimens
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Visual appearance of the specimens (F/T)

    

PC-CaCl2-F/T-185cycles PC-MgCl2-F/T-350cycles PC-NaCl-F/T-350cycles PC-DIW-F/T-350cycles 

    

FA-CaCl2-F/T-350cycles FA-MgCl2-F/T-350cycles FA-NaCl-F/T-350cycles FA-DIW-F/T-350cycles 
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Compressive strength
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PC Series-F/T PC Series-W/D

FA Series-F/T FA Series-W/D

RDME changes (specimens with limestone)
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Relative DME – PC concrete  F/T and W/D

(dolomite)

  

PC Series-F/T PC Series-W/D 
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Relative DME –FA concrete – F/T and W/D

(dolomite)

  

FA Series-F/T FA Series-W/D 
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Microstructure –PC concrete - W/D and F/T

  

(a) Deposits of Chlorides (PC-CaCl2-W/D) (b) Crystals of CaCl2 (PC-CaCl2-F/T) 
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(c) Brucite (PC-CaCl2-F/T) (d) Gypsum (PC-CaCl2-W/D) 

 

Microstructure –PC concrete – F/T and W/D
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(a) Brucite (PC-MgCl2-F/T) (b) CH surrounding brucite (PC-MgCl2-F/T) 

 

Microstructure –PC concrete - F/T



J. Olek et al.,        Presented at the 2015 ACI Spring Convention, Kansas City, MO, April 13, 2015                     Slide 26

  

(c) Magnesium chloride (PC-MgCl2-F/T) (d) Friedel’s salt (PC-MgCl2-F/T) 

 

Microstructure –PC concrete - F/T
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(a) PC-CaCl2-W/D (b) PC-MgCl2-W/D 

 

Microstructure –PC concrete - W/D
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(c) PC-NaCl-W/D (d) PC-DIW-W/D 

 

Microstructure –PC concrete - W/D
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(a) PC-CaCl2-W/D (b) PC-MgCl2-W/D

(c) PC-NaCl-W/D (d) PC-DIW-W/D
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Transverse Damaged Joint from US 67 
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SEM Observations
Friedel’s salt𝐶4𝐴  𝑆𝐻12 + 2𝐶𝑙 → 𝐶3𝐴 ∙ 𝐶𝑎𝐶𝑙2 ∙ 10𝐻 + 𝐶  𝑆𝐻2
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SEM Observations
Ettringite2𝐶  𝑆𝐻2 + 𝐶4𝐴  𝑆𝐻12 + 16𝐻 → 𝐶6𝐴  𝑆3𝐻32
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SEM Observations

2𝐶  𝑆𝐻2 + 𝐶4𝐴  𝑆𝐻12 + 16𝐻 → 𝐶6𝐴  𝑆3𝐻32 Ettringite
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SEM Observations

• Voids frequently filled with 
Ettringite and/or Friedel’s salt
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• Calcium chloride

 Most visibly damaged specimens (cracking and 
lost of material along the edges)

 Highest (15~17%) reduction in RDME

 Gypsum, CH, and Friedel’s salt deposits in the 
matrix

 Lowest compressive strength – PC after 350 FT 
cycles (~2,350psi)

Lab Specimens
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• Magnesium chloride

 Reduction in RDME ~14% (F/T), 10%(W/D) 
Onset of the reductions in RDME occurred later 
than in case of CaCl2 exposure

 Some spalling along the edges

 Lowest compressive strength - PC after 350 FT 
cycles (~6, 000 psi)

 Deposits of brucite in the near-surface region and 
occasional  nests of M-S-H within the paste

Lab Specimens
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• Sodium chloride

 Initial increase in the RDME over time (dropped 
to its original value after 350 F/T cycles), 

 No visible cracks

 Lowest compressive strength – PC after 350 FT 
cycles (~4,000 psi)

Lab Specimens
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 Compared to laboratory specimens the field 
specimens exhibited larger degree of infilling of 
the air voids (AFt, Friedel’s salt)

 Infilling increased with depth and was more  
extensive in areas located near the sealed joints

 In general, specimens obtained from mid-span of 
the slab exhibited better air void parameters, good 
FT resistance and relatively lower rates of 
absorption compared to cores from joints

Field Specimens
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Thank you


