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Fig. 6-9. Plan view showing typical wall reinforcoment details.
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Earthquake Resistant
Structural Walls —
Tests of Isolated Walls

e) Specimen C6 f) Specimen C8

Boundary Elements — Rectangular Walls
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Flexure and shear deformations

Flexure

Specinen 67

Web crushing of slender walls

Web crushing
zone
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(a) Initial crack pattern (b) Cracking pattern after
(for one direction of loading) several large reversals
(for one direction of loading)
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Effect of cyclic loading and shear
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Slender Walls — Displacement Capacity

T

o All test specimens were able to sustain multiple
cycles to drift ratios exceeding 1%.

o Walls with confined boundary elements were able
to sustain larger inelastic deformations.

o0 Walls that experienced web crushing sustained
slightly lower maximum inelastic deformations.

o0 Maximum inelastic displacement depends on
loading history.
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Slender Walls — Shear Capacity

o Average shear stress of 4\/f7C' represented the
boundary between flexural and shear failure
mechanisms.

o lf V> 0.6 V,, shear failure was observed under
cyclic lateral loads.

o0 Walls with low web reinforcement ratios are
susceptible to degradation of shear strength with
cycling.
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