

American Concrete Institute[®] Advancing concrete knowledge

Composite and Modular Structures, Part 2

ACI Spring 2012 Convention March 18 – 21, Dallas, TX

UNIVERSITY O Cinc	innati Pro	oposed Design	Procedure
1. D n	Determine the load dema noment	ands on a single coupling	beam, both shear and
a) 2. E a) b)	The fuse section is d designed FIRST Design the fuse Shear Capacity: Flexural Capacity:	designed to resist these for $\phi V_{nf} = \phi \left(0.6F_y h_{nf} t_{nf} \right)$ $\phi M_{nf} = \phi M_{pf} = \phi F_y z_f$	ces and must be Check limiting width-thickness ratios:

univers	ncinnati Proposed Design Procedure	
3.	Determine fuse length to ensure it is shear-critical:	
í.	$e \leq \frac{(1.6)M_p}{V_p}$	
	Where: $M_p = M_{pf}$ $V_p = V_{nf}$	
	Post defes	
4.	Use the EXPECTED shear strength of the fuse to determine the loads imparted to the surrounding embedded beams:	

Half-Scale Experimental Test

- Half-scale test coupling beam designed from floors 5-8 of the prototype structure
 Experimental steel fuse coupling beam already fabricated
- Instrumentation packages will be used on the fuses, and the embedded beams both outside and inside the reinforced concrete walls
- Testing schedule is likely for April-May, 2012
- Data from experiment will help guide future analytical modeling

Previous test at the University of Cincinnati Large Scale Testing Facility

