DO YOU REALLY KNOW ABOUT MOISTURE CORRECTIONS?

Allyn Luke 14 April 2013 Designing Concrete for the 21st Century Minneapolis, Minnesota

Why Moisture Corrections Are Needed?

- Stockpile moisture conditions vary depending on storage conditions and the weather.
- Varying amounts of water coming from the aggregates must be accounted for if the intended amount of water is to be accurately achieved in the mix.

The Issue in Question

- Difference between industry practice (IP) and technically correct (TC) procedures for making moisture adjustments
- IP bases free water adjustments on saturated surface-dry (*ssd*) weights (masses), where TC is based on oven-dry (*od*) weights
- The difference in free water computation between the methods can be very tiny in some areas, but significantly different in others.

Why Should You Care?

- High quality concrete requires a high level of water control
- Especially in specialty concretes like SCC and HSC
- To have a full understanding of the subject
 To appreciate the pros and cons of the technically correct and the standard industry approaches to making moisture adjustments.

Aggregate Moisture States

Oven-dry (*od*)- no moisture in the aggregates
 Saturated surface dry (*ssd*)- no surface

moisture

- Wet- water on surface available to hydrate cement
- Not fully saturated in between od and ssd
- Batch ticket weights (masses) are generally given for aggregates in the *ssd* condition.

Aggregate Moisture States (cont)

water on the surfaces

Saturated surface-dry

•Aggregates below *ssd* absorb water from the mix.

•Aggregates above *ssd* contribute water to the mix.

•Aggregates at *ssd* neither absorb nor contribute water to the mix.

Moisture Content MC%

- ASTM C 566 Evaporable Moisture
- Heat weighed sample in oven or carefully in pan until there is no further moisture loss.
- Subtract the oven-dry mass , m_{od} , from the initial sample mass, m_i , (that's the water) divide by m_{od} then multiply by 100 for %.

$$MC\% = \frac{m_i - m_{od}}{m_{od}} \times 100$$

Oven-dry state is repeatable

Free Moisture

Free water is available to hydrate cement, therefore must be subtracted from the base water mass to maintain the required *w/cm*.

- It must also be added to the base aggregate mass. Otherwise the *ssd* aggregate mass will be short.
- The Free Moisture is the Total Moisture minus the Absorbed Moisture.

 $MC\%_{free} = MC\% - A\%$

Mass of Free Water Practical vs. Technical
Difference between industry practice and technically correct procedures
IP computes FWM based on *ssd* mass

 $\blacksquare TC computes FWW based on od mass$

$$mw_{free} = m_{od} \times MC\%_{free}$$

The Consequence of the Difference

IP overestimates the FWM
by a little
Significant under certain circumstances
Demonstration requires a little Algebra

Saturated Surface-Dry ssd

Difference in methods results from IP's using *ssd* to compute the FWM
 ssd characterized by being completely saturated without free water
 A special moisture state

Absorption A%

 Absorption is the amount of moisture an aggregate will absorb before free moisture becomes available on the surface

- Moisture content when aggregate is at *ssd* A% is determined using ASTMs C 127 or C 128
- Looks just like oven-dry

Absorption A% (cont.)

Subtract the *od* mass , m_{od} , from the *ssd* sample mass, m_{ssd} , divide the difference by $m_{od,}$ then multiply by 100 for %.

$$A\% = \frac{m_{ssd} - m_{od}}{m_{od}} \times 100$$

• Rearranging this equation the *ssd* mass can be expressed in terms of m_{od} and A%.

 $\frac{A\%}{100} \times m_{od} + m_{od} = m_{ssd}$ factoring out m_{od} $m_{ssd} = m_{od} \left(1 + \frac{A\%}{100} \right)$

Algebraic Analysis of IP

To examine the difference between IP and TC methods m_{ssd}, in terms of m_{od}, is substituted for technically correct m_{od} in the computation of FWM.

$$\begin{split} mw_{free} &= m_{ssd} \times \frac{MC\%_{free}}{100} \\ mw_{free} &= m_{od} \times (1 + \frac{A\%_{o}}{100}) \times \frac{MC\%_{free}}{100} = \left(m_{od} + m_{od} \frac{A\%_{o}}{100}\right) \times \frac{MC\%_{free}}{100} \\ &= m_{od} \frac{MC\%_{free}}{100} + m_{od} \frac{A\%_{o}}{100} \frac{MC\%_{free}}{100} \end{split}$$

What is in this result?

$$mw_{free} = m_{od} \frac{MC\%_{free}}{100} + m_{od} \frac{A\%}{100} \frac{MC\%_{free}}{100}$$

The first term is the technically correct computation for the free water mass.
 The second term is the difference between IP and TC methods

Closer Look at the Second Term

$$+ m_{od} \frac{A\%}{100} \frac{MC\%}{100}_{free}$$

Depends on three factors
 A small percentage multiplied by another small percentage – hundredths or thousandths of a percent
 This is why the difference between the methods come out small when demonstrated with typical values.

The Difference can be Significant

- Generally, the difference will be quite small and can, for various reasons, easily be neglected.
- However, with highly absorbent aggregates or aggregates at high moisture contents the difference could be consequential.

Impact on Mix Proportions

- Because FWM is high, water in the mix is low.
- Because FWM is high too much aggregate is weighed out.
- Effects are negligible with hard rock aggregates, but IP should be used with care when higher than average absorption materials are used

Advantages of Industry Practice

- Design and Batch Ticket weights are usually given in *ssd* terms
- Less computation, less possibility for mistake
- Differences are usually insignificant and within ASTM Tolerances
- Water is held back
 - Is that such a bad thing?

Guidance from ASTM Standards

- ASTM C 94 allows weighing tolerances ± 2% for aggregates, ± 1% for water
- ASTM C 1602 specifies that when w/c is increased 0.01, as can happen with high admixture dosages, it must be accounted
- Change the water content 1% or more you need to account for it.

Spreadsheet Analysis

•Within a range of Absorption and Total Moisture %, when would the difference between the methods exceed 1%?

Standard Industry Practice				S =	3200 (change me!)		SSD					
Formula: W = <u>S*(1 + M/10</u> 0 - A/100)												
		Absorption [%]										
		0	1	2	3	4	5	6	7	8	9	10
otal M oisture %	0	3200	3168	3136	3104	3072	3040	3008	2976	2944	2912	2880
	1	3232	3200	3168	3136	3104	3072	3040	3008	2976	2944	2912
	2	3264	3232	3200	3168	3136	3104	3072	3040	3008	2976	2944
	3	3296	3264	3232	3200	3168	3136	3104	3072	3040	3008	2976
	4	3328	3296	3264	3232	3200	3168	3136	3104	3072	3040	3008
	5	3360	3328	3296	3264	3232	3200	3168	3136	3104	3072	3040
	6	3392	3360	3328	3296	3264	3232	3200	3168	3136	3104	3072
	7	3424	3392	3360	3328	3296	3264	3232	3200	3168	3136	3104
	8	3456	3424	3392	3360	3328	3296	3264	3232	3200	3168	3136
	9	3488	3456	3424	3392	3360	3328	3296	3264	3232	3200	3168
	10	3520	3488	3456	3424	3392	3360	3328	3296	3264	3232	3200
Theoretic	ally C	Correct		S =	3200							
Formula: \	N = S	[100 + M]	/ [100 + A]									
		Absorption [%]										
		0	1	2	3	4	5	6	7	8	9	10
%	0	3200	3168	3137	3107	3077	3048	3019	2991	2963	2936	2909
	1	3232	3200	3169	3138	3108	3078	3049	3021	2993	2965	2938
	2	3264	3232	3200	3169	3138	3109	3079	3050	3022	2994	2967
้อ	3	3296	3263	3231	3200	3169	3139	3109	3080	3052	3024	2996
stu	- 4	3328	3295	3263	3231	3200	3170	3140	3110	3081	3053	3025
Total Moi	5	3360	3327	3294	3262	3231	3200	3170	3140	3111	3083	3055
	6	3392	3358	3325	3293	3262	3230	3200	3170	3141	3112	3084
	7	3424	3390	3357	3324	3292	3261	3230	3200	3170	3141	3113
	8	3456	3422	3388	3355	3323	3291	3260	3230	3200	3171	3142
	9	3488	3453	3420	3386	3354	3322	3291	3260	3230	3200	3171
	10	3520	3485	3451	3417	3385	3352	3321	3290	3259	3229	3200

How Much Impact?

Difference increases directly with increase in the FMC

How Much More Impact?

Difference Between Methods at 1% FMC

Mostly, the difference between IP and TC increases as the negative of the square of absorption -A%²

Numerical Example enough algebra

Within a range of Absorption and Total Moisture %, when would the difference between the methods exceed 1%?

■ 500 lb. cement mix, with the 3200 lb. *ssd* aggregate

To move w/cm 0.01, a 5 lb. water change would be required.

cement	w/c	W		
500	0.56	280		
500	0.57	285		
500	0.58	290		

Free Water Computation Difference

		Difference in free water mass between TC and IP methods										
		Absorption [%]										
		0	1	2	3	4	5	6	7	8	9	10
	0	0	3	-1	-3	-5	-8	-11	-15	-19	-24	-29
	1	0	0	-1	-2	-4	-6	-9	-13	-17	-21	-26
	2	0	0	0	-1	-2	-5	-7	-10	-14	-18	-23
e,	3	0	1	1	0	-1	-3	-5	-8	-12	-16	-20
Total M oistur	4	0	1	1	1	0	-2	-4	-6	-9	-13	-17
	5	0	1	2	2	1	0	-2	-4	-7	-11	-15
	6	0	2	3	3	2	2	0	-2	-5	-8	-12
	7	0	2	3	4	4	3	2	0	-2	-5	-9
	8	0	2	4	5	5	5	4	2	0	-3	-6
	9	0	3	4	6	6	6	5	4	2	0	-3
	10	0	3	5	7	7	8	7	6	5	3	0

IP should not be used with high absorption aggregates, i.e. above 5%

- IP should be used carefully with aggregates at high moisture contents
- If IP is used under such conditions it should be used with understanding

Precedents For This Approach

- Appendix X2 of both <u>ASTM C 127 & C 128</u> express this same relationship (*ssd=od* x (1+A%)) in terms of *od* and *ssd* specific gravities (relative densities)
- <u>ACI E1-07 Aggregates for Concrete</u> report from ACI Committee E-701 utilizes exactly the same approach (*od=ssd/*(1+A%)) to making moisture adjustments as is proposed
- 3. <u>PCA Design and Control</u> makes adjustments based on *od* weights (masses)
- 4. NRMCA instructional materials make moisture adjustments based on *od* weights
- 5. From <u>ACI 211.1-70 to -91</u> (reapproved 2009) has always utilized *od* weights for making moisture adjustments

Thank You for Your Attention

QuestionsComments