

Assessment of Concrete Deformation and Failure Behavior during a Standard Fire Test and a Controlled Heating Rate Test

Elin Jensen Department of Civil and Architectural Engineering

ACI Spring Convention

Kansas City, MO

April 12, 2015

Normal and High Strength Concrete Column Behavior

Kodur, V.K.R. Fire resistance design guidelines for high strength concrete columns. NRCC-46116 or ASCE/SFPE Specialty Conference of Design Structures for Fire and JFPE, Baltimore, MD, October 2003, pp. 1-11

Observations from Column Fire Testing

- The failure of the RC column is governed by the strength of the concrete
 - Concrete carries an increasing portion of the applied column load as the steel temperature increases resulting in yielding and decreasing strength.
 - The concrete strength also decreases with temperature

 The fire resistance decreases with increasing load intensity (loss of strength is higher in HSC than in NSC).

Motivation

 How comparable are concrete behaviors observed from simulated controlled heating rate fire tests to that of concrete behavior in standard fire tests?

Concrete Mix	NSC	HSC	VHSC
Limestone Coarse Aggregate (kg/m ³)	1032	785	787
Limestone Fine Aggregate (kg/m ³)	795	880	859
Limestone Intermediate Aggregate (kg/m ³)	_	349	288
Type 1 Cement (kg/m ³)	203	259	262
Slag Cement (kg/m³)	110	146	141
Mid-Range Water Reducer (Super P) (L)	0.95	1.2	1.2
Water (kg/m ³)	133	114.5	105
Water/Cementitious Materials Ratio	0.43	0.28	0.26
Compressive Strength (MPa)			
28 days	51.5	63.4	90.0
At Time of Testing	52.5	77.5	107

Specimens around 80-87% internal RH prior to testing VHSC: conditioning at $_{45}^{\circ}$ C

Specimens: 100 mm by 100 mm cross section area (length 450 & 900 mm)

Test Setup

Testing Procedure

- Specimen Preparation
 - Loaded Prism
 - Free Expansion Prism
- Specimen Loaded to the Predetermined Load
- Thermal Profile Started
- Sustained Load During the Cooling Phase

Specimen Failure at 740°C

Temperature Development in Standard Fire Test

Temperature Development in Controlled Heating Rate Test

Total Deformation

 Total deformation of concrete is expressed as the sum of four strain components as follows:

 $\varepsilon = \varepsilon_{th}(T) + \varepsilon_{t\sigma}(\sigma, T) + \varepsilon_{cr}(\sigma, T, t) + \varepsilon_{tr}(\sigma, T)$

- Components of Total Strain
 - Thermal Strain (ε_{th})
 - Stress Related Strain ($\varepsilon_{t\sigma}$)
 - Creep Strain (ε_{cr})
 - Transient Strain (ε_{tr})

Total Strain Curves – Controlled Heating Rate

Total Strain Comparison Standard Fire and Controlled Heating

During and After Standard Fire Test

Spalling near 110 °C core temperature

Longitudinal Crack develops during test (450 - 500°C)

Specimen behavior similar at α = 0.167 and α = 0.25

Specimen Failure for initial load level α = 0.33

Total Strain Comparison Standard Fire and Controlled Heating

Observations

- The deformation and failure behavior was similar for concrete prisms when load intensity and average core temperature was accounted for.
- Results indicated that deformations exceeding ≈ 1%, whether they occur during heating or cooling, are expected to cause an unstable 'runaway' failure.

Acknowledgements

National Science Foundation Award #0747775

 Center for Innovative Materials Research (CIMR) at Lawrence Technological University

- Assistance During Experimental Research From:
 - Brittany Schuel, Mishi Joshi, Daniel Ziemba, Carl Durden

Thank you!

