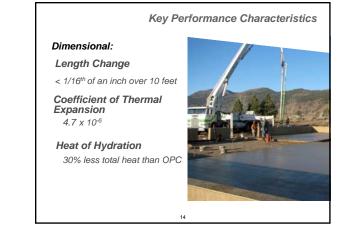
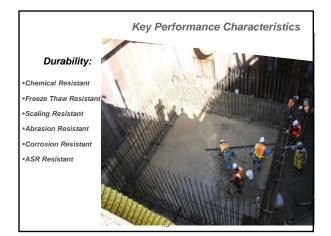
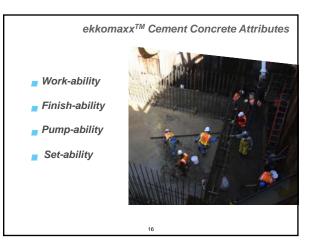


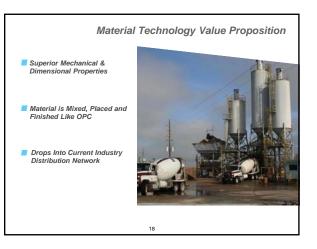
Key Performance Characteristics


Mechanical:

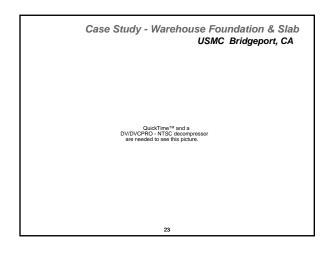

Compressive Strengths 30% of 28 Day Strengths in 3 Days 80% of 28 Day Strengths in 7 Days


Flexural Strengths

20% of Compressive Strengths



	Mix Desi Typical General Use						
	Mix Design						
Component	SpG	Lbs (gal)/ cuyd	Abs. Volume	Source			
C Ash	2.770	\$13.6	2.971				
F Ash	2.290	86.4	.605				
CA (SSD)	2.598	1629	10.050				
FA (SSD)	2.611	1452	8.913				
Water	1.000	149 (17.8)	2.388				
BA 100	1.355	31.40 (2.78)	.371	CTI Proprietary			
M 300	1.328	6.80 (.61)	.082	CTI Proprietary			
Control 40		68 oz		Sika			
Air	6.0 %	11 oz	1.620	BASF Micro air			
Total		4059.8	27.000	W/C Ratio:.27			
Strengths:	24 hours	2 day	7 days	28 days			
	1200 ps	i 210	0 psi 370	10 psi 6000 psi			


KEMRO		Mix D	Design		
Component	SpG	Lbs (gal)/ cuyd	Abs. Volume	Source	_
C Ash	2.770	715	4.136	Big Cajun	
F Ash	2.290	52.6	.366	Boral	
Component C	2.970	40	.215	CTI Proprietary	
CA (SSD)	2.674	1800	10.737	Martin Marietta	
FA (SSD)	2.615	1281	7.799	Fordyce	
Water	1.000	167.3 (20)	2.681	Galveston City	
Air	1.5%		.405		
Liquid Activator	1.340	64.4 (5.75)	.661	CTI Proprietary	_
Total		4120.3	27.000	W/C Ratio:.22	
Strengths:	24 hours	2 day	7 days	28 days	
	2100 ps	. 250	00 psi 60	050 psi 8000 psi	

12/21/2012

Other Major Green Cements

Calcium Sulfo Aluminate (CSA)

Calcium Aluminate (CA)

Activated Glass (AC)

Magnesia Phosphate

27

Geopolymers

Calcium Sulfo Aluminate (CSA)

Commercial sulfoaluminate clinkers developed by the Chinese predominantly consist of $C_4A_3S^-$ (55–75%) (also known as Klein's compound) and a-C₂S (15–25%). The remaining phases present are Cl₂A₇, C₄AF and CaO.

Belite (C₂S)-rich sulfoaluminate cements are preferred to alite (C₃S)-rich, since belite-based cements can be formed at around 1200 C, as opposed to 1400 C for the alite cements. This equates to an energy savings of 20% during manufacture(Popescu, et.al.) and results in less CO₂ being generated from the reaction of formation of C₂S compared to C₃S.

Cements containing larger quantities of C_2S than C_3S are less permeable as well as being more resistant to chemical attacks and smaller drying shrinkage.

Calcium Aluminate (CA)

CAC's were invented in the early 1900's to resist sulfate attack.

CAC's are inherently rapid hardening and can be rapid setting, adjustable with appropriate chemical admixtures.

These cements are often used in refractory applications, building chemistry and rapid repair, rehabilitation and construction of concrete flatwork (e.g. sidewalks, overlays and full-depth pavement construction).

The rapid hardening properties, resistance to sulfate attack and alkaliaggregate reaction and abrasion resistance make these cements desirable in a wide-range of special applications.

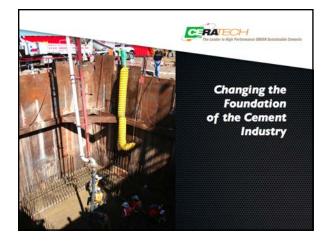
The manufacturing process of CAC's generates significantly less CO₂ than the ordinary portland cement (OPC); roughly on the order of 50% less.

The most widely discussed and controversial aspect of CAC's is a process referred to as conversion. Conversion is a process where metastable hydrates (CAH₁₀ and C₂AH₈) formed at low and moderate temperatures (T=5 to -70° C) convert to stable hydrates (C₃AH₆) formed at high temperatures (T>70^{\circ}C). This process leads to an increase in porosity and subsequent decrease in strength. Conversion is an inevitable process and must be accounted for when designing the concrete mixture.

Magnesia phosphate cements:

Synthesized by reacting magnesium oxide with a soluble phosphate (e.g. ammonium phosphate). In essence, this is an acid–base reaction between the phosphate acid and the magnesium oxide to form an initial gel that crystallizes into an insoluble phosphate, mostly in the form of magnesium ammonium phosphate hexahydrate (NH₄MgPO₄6H₂O).

Magnesia phosphate cements are characterized by very high early strength and rapid setting, which makes them useful as a rapid patching mortar. It can also bind well to a wide variety of aggregates and substrates. Unlike magnesium oxychloride and oxysulfate cements, this cement has good water and freeze-thaw resistance and is, therefore, amenable to a wide variety of applications. A major drawback, however, is the expensiveness of phosphate, which confines its application to niche areas.


30

Recycled Glass-based Cements and Concretes:

Due to a high concentration of amorphous silica (~70% wt.) soda-lime glass can react pozzolanically with portlandite in a glass-portland cement system and produce low Ca/Si C-S-H. At moderate (up to 30%wt.) replacement levels of OPC, glass powder has been found to improve compressive strength beyond 28 days; however, early strengths can be reduced when using the same w/cm.

Fineness of glass powder has a significant impact on its reactivity; glass finer than 38µm satisfies the strength activity index of ASTM C 618 (SAI>75% at 7days) and can be classified as a Type N pozzolan. By further increasing glass fineness and/or heat curing, concretes with 3-day strengths surpassing that of OPC concrete can be prepared. In addition, fine glass powder (<10µm) can mitigate the alkali-silica reaction generated by glass aggregates or other natural reactive aggregates

31

