Evaluation of the Proposed European Screening Test for Stainless Steel Rebar

T. W. Bandura, C. B. Van Niejenhuis & C. M. Hansson

engineering.uwaterloo.ca

Funded by the Ministry of Transportation Ontario

Evaluating and Ranking Corrosion Resistant Rebar

- Conventional testing of rebar embedded in concrete
 - Several years
- Testing of rebar in synthetic pore solution with added chlorides
 - Several months
- ASTM A955 Procedure A3: Cracked Beam Test
 - 60 weeks
- ASTM A955 Procedure A2 Rapid Macrocell Test

2

- 15 weeks

Modification of EN 480-14:2006

Schönning & Randström, Eurocorr 2011 Paper 4903

- 10 replicates of each steel
- Stainless steel rebar cast in standardized mortar cylinders
- w/c = 0.50
- 4% Cl⁻ by mass of cement added as NaCl to mixing water
- After 24 hrs curing in mould, cylinders immersed in saturated Ca(OH)₂ solution
- Open circuit potential monitored for an additional 24 hrs
- Potential of +200 mV versus SCE applied for 1- 4 days
- Current monitored and, if greater than 0.025 mA/cm² for >2 hrs., active corrosion considered to have occurred

Experimental set-up

Questions

- Is +200 mV SCE appropriate?
- Is 4%Cl⁻ as NaCl appropriate?
- Is a corrosion limit of 0.025 mA/cm² (250 mA/m²) appropriate as pass/fail?
- Does the concrete mix design influence the results?
- Do the rankings from this test correspond to those of long term tests without the applied potential?

Is +200 mV SCE appropriate?

Our modifications of this procedure

- Only 3 replicates of each steel for each variable
- Typical highway concrete mixture
 - with 12.5 mm max coarse aggregate (instead of 19 mm)
 - -w/cm = 0.40
- 3 different test variables

Variables tested

- Potentials:
 - +200 mV SCE
 - +100 mV SCE
- Chloride content by weight of cementitious materials:
 - 5% (max. content reported in field in Canada)

- 3%
- Concrete mix:
 - 75% GU (Type 1) + 25% Slag
 - 100% GU

OPC with 25% slag, 5% CI-, +200 mV SCE

OPC with 25% slag, 3% Cl-, +100 mV SCE

OPC, 3% CI-, +100 mV SCE

No corrosion

Extensive corrosion

13

WATERLOO

▲ OPC w. 25% slag, 3% Cl-, +100 mV SCE ■ OPC w. 25% slag, 5% Cl-, +200 mV SCE • OPC, 3% CI-, +100 mV SCE ♦ OPC w. 25% slag, 3% Cl-, +200 mV SCE 10000 UNS S32205 Corrosion Current Density, mA/m² 1000 100 10 1 0.1 100 200 300 400 500 700 800 0 600 Polarization Potential, mV WATERLOO ENGINEERING 17

Number of bars of the three replicates in concrete with 3% Cl⁻ with observed corrosion products after the 96 hrs at the potentials given (# bars with corrosion rate >0.025 mA/cm² for 2 hours)

Ranking	Grade	Concrete with slag @ 200mV	Concrete with slag @ 100mV	OPC concrete @100 mV
1	S32205	0 (0)	0 (0)	0 (0)
2	S32101	1 (1)	1 (0)	0 (0)
3	S31653	2 (0)	1 (0)	0 (0)
4	S24100	2 (2)	0 (0)	0 (0)
5	S32304	3 (1)	2 (1)	0 (0)

Comparative ranking on the basis of visual examination

	S32205	S31653	S32304	S32101	S24100
Current tests	1	3	5	2	4
Longitudinally cracked concrete	1	3	5	2	4
Transversely cracked concrete	2	3	4	1	5
Pore solution tests	1	3	2	4	5

20

Ranking from pore solution tests based on chloride threshold concentration, not visual observation

Conclusions

- + 200 mV SCE leads to instability of system;
- A fixed polarization with respect to the open circuit potential, might be a better measure;
- The pass/fail limit of 0.025 mA/cm² is too high and 0.0025 mA/cm² (25 mA/m²) would be more appropriate;
- The different behaviour of the steels in the 2 concrete mixtures suggests use of an OPC mortar with w/c=0.50 may produce misleading results.

The Most Important Conclusion:

 The ranking of alloys on the basis of visual inspection of the corrosion after the tests agrees relatively well with that from longer term tests in cracked concrete

