3D Aggregate Shape Analysis and Parking Model

E.J. Garboczi, NIST, Boulder, CO J.W. Bullard, NIST, Gaithersburg, MD Y. Lu, Boise State University, Boise, ID Z. Qian, Delft Technical University, Delft, Netherlands

Why particle shape analysis?

- Unbound aggregates:
 - Packing density, mechanical strength of beds
- In concrete:
 - Rheology of fresh concrete, early-age strength
- General applications:
 - Size measurement laser diffraction, sieve analysis, high speed photography/image analysis, sedimentation
 - Initial reactivity of powders via specific surface area
 - State of health of cells/tumors, healthy vs. unhealthy, benign vs. malignant
 - Retroreflectivity of glass beads in road marking paints
- Note: Software package for shape analysis = TSQUARE, in development at NIST

Two X-ray CT units

Blast furnace slag

> 300 µm simulated lunar soil particles

Spherical harmonic analysis and X-ray CT

• Define $r(\theta, \phi)$ from center of mass to surface

- Compute $r(\theta, \phi) = \sum_{n,m} a_{nm} Y_n^m(\theta, \phi)$
- Y_n^m = spherical harmonic function
- Comprehensive mathematical characterization of shape, n ≈20, -n < m < n
- All shape and size information for particle is in the (n+1)² coefficients

Wilson 0.5 in - #1,2

European standard sand

Fine aggregate for hot-mix asphalt

Rock denoted by 3.85 - 3.17 - 1 (L-W-T)

W-5					0.0
W-4				0.0	0.0
W-3			0.3	0.0	0.0
W-2		2.6	1.2	0.2	0.0
W-1	72.7	22.7	0.3	0.0	0.0
	L-1	L-2	L-3	L-4	L-5

W-5					0.0
W-4				0.0	0.0
W-3			0.4	1.1	0.0
W-2		8.3	8.3	3.6	0.0
W-1	33.6	38.2	6.2	0.2	0.2
	L-1	L-2	L-3	L-4	L-5

Sand for hot-mix asphalt

Potential ASTM standard

- ASTM Committee D04.51
- Initially for "sand" size between 0.5 mm and 5 mm
 - Will supplement existing procedure ASTM D4791-10 for coarse aggregates
- Standard procedures for making cylindrical samples sand embedded in epoxy
- Suggested X-ray CT scanning procedures, minimum pixel size needed
- Automated image analysis and particle analysis procedures
- End result will be a file, importable into a spreadsheet program, of 3D particle geometrical/shape data
 - Original mathematical description via spherical harmonic coefficients, will also be available for further user-specific data analysis

Size-shape scaling

- Rock from single source
 - Granite Rock Wilson quarry in California, collaboration with Michael Taylor
 - Crushed and screened
- Size of rocks from 20 μm 40 mm, judged by ASTM sieve analysis
- Particle samples from different sieves used to prepare X-ray CT samples
- Scanned and shape analysis 58 000+ particles
- Separated into three size classes:
 - 0.0175 mm to 0.24 mm, 0.24 mm to 3.29 mm, and
 3.29 mm to 45.1 mm
 - Particle shape parameters remained essentially unchanged, within uncertainty, for three size classes

Blasted/crushed rock from 20 µm – 40 mm

360 micrometers

1.8 mm

11 mm

K⁻¹ = Inverse of integrated curvature, VESD = diameter of sphere with equal volume

PSD graphs

- Particle size distribution graphs are always presented as
 - "size" on the x-axis
 - volume fraction or mass fraction (same for homogeneous material) on the y-axis

Question: what length should be used to characterize the "size" of the particle? Is it even possible to do so with a oneparameter model?

Use various X-ray CT computed "size" quantities

Microfine aggregate

- Do X-ray CT plus spherical harmonic analysis, calculate L, W, and T
- Construct PSD using L, W, or T as the "size" variable
- Carry out laser diffraction experiments
- "Size" is diameter of a sphere with equal diffraction patterns
- Compare laser diffraction with various constructed histograms, see which, if any, of LWT compares best with laser diffraction "size"

Question: Why does graph go well outside the 38 μ m and 75 μ m sieve limits?

Anm model

- Places real particles randomly into a unit cell
- Cement in water matrix, sand in cement paste matrix, gravel in mortar matrix
- Geometrical model can use as input into meshing and material models
- Version 1 developed with Zhiwei Qian (Delft)
- Version 2 developed with Yang Lu and Stephen Thomas (Boise State University) and Jeff Bullard (NIST)
- Code not yet public, collaborators welcome contact Yang Lu at Boise State, Civil Engineering or myself

Anm model: Two mortars using periodic boundary conditions. Particles outside the box are periodic "ghost" particles.

Anm model - concrete

Summary

- Blend of computational and experimental materials science is powerful for examining 3D particle shape
- Many collaborators...
- Future work: In collaboration with Jay Goguen (JPL) and Olga Gomez (Spain), have borrowed 2 g of actual lunar soil from NASA, will do shape characterization followed by light scattering computation, to better analyze light scattering from the moon and Mars