

Reactivity analysis of high calcium fly ash as raw material for non-traditional, fly ash-based binders

Ivan Diaz-Loya CeraTech, Inc.

Technology overview

......Carbon Neutral Cement

Cement Manufacturing Process Comparison

(To Produce One Ton of Cement)

Quality control

.....Carbon Neutral Cement

QC Tools

- Beyond pass-fail
- Deliver concrete with consistent set time and strength
- Quantify reactivity and relate to the effect in the concrete mix. Quantify reactivityquantify adjustments
- Deliver green concrete, quality and consistency

HC Fly ash

- Silica, calcium oxide, alumina and iron oxide
- Mostly amorphous
- Crystalline components can be considered relatively inert
- MPS: 20 microns on avg
- Reactivity depends on glassy phase content and composition

Reactivity study

- 20 Fly ash samples
- Fly ash variables: XRF, XRD, PSD
- ASI and NBO/T calculated from the total oxide content as measured by XRF
- Response: Compressive strength@ 1 day

Chemical analyses

fly ash	Na2O	MgO	A12O3	SiO2	P2O5	SO3	K2O	CaO	TiO2	Fe2O3	CuO	SrO	ZrO2	BaO	LOI
1	1.49	5.22	17.5	37.2	0.64	1.18	0.49	25.7	1.51	7.06	0.06	0.36	0.05	0.67	0.5
2	2.37	6.14	17.8	33.3	0.98	1.88	0.38	28.2	1.41	5.38	0.06	0.37	0.05	0.74	0.4
3	2.25	6.66	17.1	33.8	1.05	1.73	0.44	27.5	1.36	6.13	0.05	0.41	0.04	0.73	0.4
4	2.11	6.79	16	32.9	0.68	2.4	0.36	28.6	1.15	6.98	0.06	0.46	0.04	0.79	0.7
5	1.98	5.09	19.6	36.2	1.12	1.1	0.44	25.7	1.44	5.48	0.05	0.41	0.04	0.68	0.4
6	1.77	4.85	20	35.8	1.14	1.13	0.46	26.2	1.49	5.22	0.06	0.45	0.04	0.68	0.3
7	1.79	4.68	20.1	35.3	1.07	1.12	0.47	26.7	1.53	5.35	0.06	0.45	0.04	0.69	0.3
8	3.49	6.1	17.2	33.5	1.14	1.57	0.38	27.5	1.38	5.74	0.05	0.35	0.04	0.71	0.7
9	2.43	9.29	16.2	29.3	0.87	2.94	0.27	29.3	1.19	5.73	*	0.54	0.04	0.92	0.5
10	1.53	4.92	17	34.4	1.08	1.21	0.53	30.1	1.22	5.93	0.05	0.35	0.04	0.62	0.6
11	2.14	7.49	15.5	31.9	0.66	2.79	0.34	29.4	1.13	6.17	*	0.47	0.04	0.74	0.8
12	2	4.89	19.7	34.3	1.12	1.59	0.47	27.4	1.57	5.25	0.07	0.47	0.04	0.74	0.3
13	1.96	4.69	18	33.8	1.15	1.26	0.52	29.5	1.25	5.85	0.06	0.34	0.04	0.63	0.8
14	2.01	6.08	17	36.8	0.73	1.83	0.45	25.3	1.19	6.47	*	0.42	0.04	0.67	0.6
15	2.12	6.74	16.1	33.7	0.7	2.52	0.38	27.6	1.12	7.68	*	0.45	0.04	0.66	0.6
16	2.36	6.31	17.9	32.9	0.92	2.03	0.4	28.4	1.5	5.3	*	0.37	0.04	0.74	0.7
17	1.91	5.46	19.3	37.4	0.98	1.33	0.48	23.9	1.35	5.74	*	0.33	0.04	0.67	0.7
18	1.89	5.17	18.8	34.1	0.79	2.55	0.42	26.3	1.42	6	*	0.37	0.04	0.67	0.9
19	4.43	5.25	17.5	33.4	0.77	2.53	0.4	25.5	1.39	4.84	*	0.34	0.04	0.61	2.5
20	3.52	6.13	17.5	32.8	1.18	1.73	0.35	27.8	1.36	5.84	*	0.36	0.04	0.75	0.5
min	1.49	4.68	15.5	29.3	0.64	1.1	0.27	23.9	1.12	4.84	0.05	0.33	0.04	0.61	0.3
max	4.43	9.29	20.1	37.4	1.18	2.94	0.53	30.1	1.57	7.68	0.07	0.54	0.05	0.92	2.5
Avg	2.28	5.90	17.79	34.14	0.94	1.82	0.42	27.33	1.35	5.91	0.06	0.40	0.04	0.71	0.66

XRD

PSD

Compressive strength

Stepwise regression

Glass science basics

Network Formers Si, Al, Fe

Network Modifiers K, Na, Ca, Mg

$$ASI = \frac{Al_2O_3}{Na_2O + K_2O + CaO + MgO}$$

$$\stackrel{\bigcirc}{=} 0.4$$

$$\stackrel{\bigcirc}{=} 0.4$$

$$\stackrel{\bigcirc}{=} 0.2$$

$$\frac{NBO}{T} = \frac{2(Na_2O + K_2O + CaO + MgO - Al_2O_3)}{SiO_2 + Al_2O_3 + Fe_2O_3}$$
1.2
0.9
0.6
0.3

Assumptions and restrictions

- No Crystalline phases (100% Glass)
- Free energy of hydration not considered
- Constant physical characteristics
- Homogeneity
- Compositional range
- Fe is always acting as a network former

Other sources of variability

- Redox state or Fe Fe (II) has much lower FEH than Fe (III)
- P2O5 in concentrations near as low as 1% can have profound effects on liquidus phase relations and transport properties [Willie an Tuttle, 1964; Toplis et al., 1994; Wolf and London, 1994]
- TiO2 can occur in a 4-fold coordination and substitute Si to act as a network former, it can also be coordinated with more than 4 oxygens and act as a network modifier

Despite the assumptions

In practical terms

Fly Ash Quality Control Report

Unit Weisser			10/20/2010		
Sio			ASTM C 618	200	H
			ting		
Tests		Α	В	С	D
Chemical Tests	- 27				
- 19 20 00	%				
Silicon Dioxide (SIO2)	33.30				
Aluminum Oxide (Al2O3)	17.80				
Iron Oxide (Fe2O3)	5.38				
Calcium Oxide (CaO)	28.20				
Magnesium Oxide (MgO)	6.14				
Sulfur Trioxide (SO3)	1.88				
Sodium Oxide (Na2O)	2.37				
Potassium (K2O)	0.38				
Alumina Saturation Index (ASI)	0.4799	0.3985 max	0.5017 max	0.5706 max.	0.6394 max.
Non-Bridging Oxygens per Tetrahedron	0.6831	0.8637 min.	0.6281 min.	0.4711 min.	0.3141 min.
Physical Tests	- N				
Moisture Content, %	0.00	3.0 max.	3.0 max.	3.0 max.	3.0 max.
LOL %**	0.13				
Amount Retained on No. 325 Sieve, %	8.11	30 max.	30 max.	30 max.	30 max.
Specific Gravity	2.69				
Performance					
Estimated ASHVC 1 day Compressive	4334	5500 min	4000 min.	3000 min	2000 min.
Strength (psi)*	+334	3300 mm	4000 min.	3000 mm.	2000 mm.
ASHVC 1 day Compressive Strength (psi)	4779	5500 min	4000 min.	3000 min.	2000 min.
Estimated Ash Grade	В				
Ash Grade	В				

Out have been found to perform an expected, These observations are based on analysis performed in 44 fly admissrables.

Aproved by:

3501 Brehm Ln., Beltimore, MD 21213

Quality Control

CereTech, Inc.

Questions??

