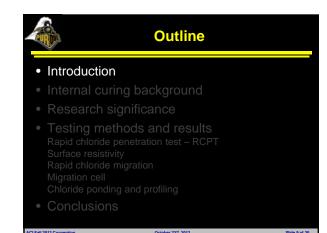
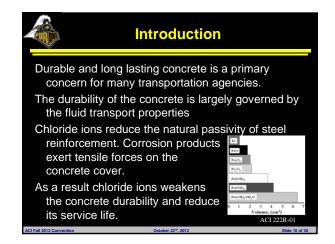
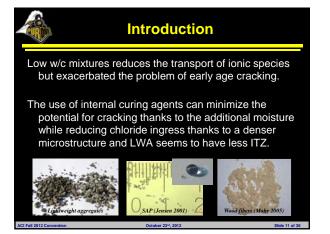
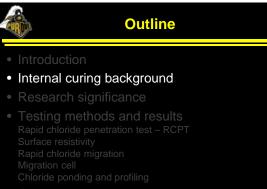
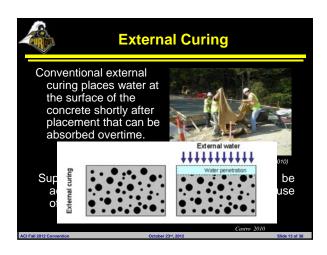

Di Bella C., Weiss J.

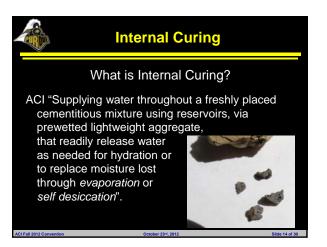


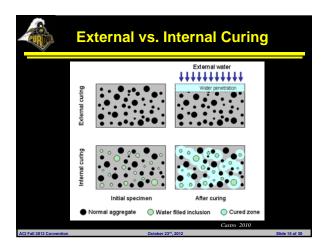





- Internal curing background
- Research significance
- Testing methods and results Rapid chloride penetration test – RCPT Surface resistivity Rapid chloride migration Migration cell Chloride ponding and profiling
- Conclusions




Di Bella C., Weiss J.



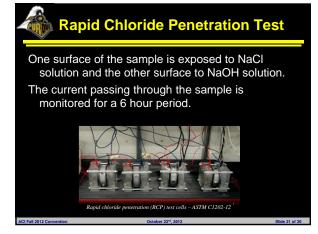
Conclusions

Outline

- Introduction
- Internal curing background
- Research significance
- Testing methods and results
 Rapid chloride penetration test RCPT
 Surface resistivity
 Rapid chloride migration
 Migration cell
 Chloride ponding and profiling
- Conclusions

Research Significance

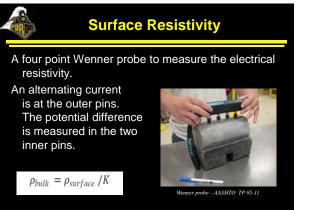
- Relatively little research has documented the effect of internal curing on reducing ionic ingress and fluid transport.
- Evaluation of the chloride transport performance of plain and internally cured concrete bridge deck mixture.
- Two bridge decks were cast in September 2010: one plain and one internally cured were cast in the state of Indiana (Monroe Co.).
- Two high strength internally cured bridge decks were cast in the state of New York (cities of Lisle and Tonawanda).

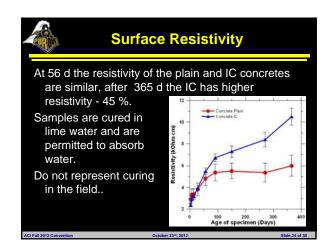


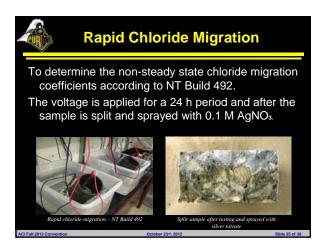
		C	Col	nstit	uer	nt Ma	ater	ials	;		
						al test were a			mat	terials	
		Cement Content	W/C	Fine Aggregate	Fine LWA	Coarse Aggregate	Mixture Water	Water in LWA	WR	AE	
		(kg/m ³)		(kg/m ³)	(%) ^A	(%) ^A					
	Plain Concrete	390	0.39	726		1046	152		0.22	0.08	
	Internally Cured Concrete	390	0.39	313	270	1046	152	25	0.22	0.08	
		referred to	o the ce	ment weight	t						
ACI Fall 2012 Cor					October 23					Slide 19	

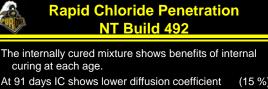
Outline

- Introduction
- Internal curing background
- Research significance
- Testing methods and results Rapid chloride penetration test – RCPT Surface resistivity Rapid chloride migration Migration cell Chloride ponding and profiling
- Conclusions

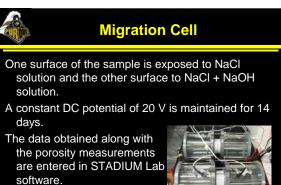



Rapid Chloride Penetration Test


IC Monroe Co. shows consistently lower charge. After 180 days IC concrete shows 35% lower penetration than plain concrete.

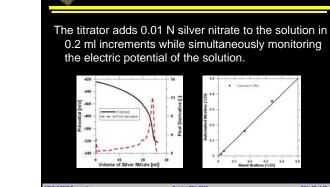

	Monr	Monroe County Bridge Deck Concrete				
Time [days]		Charge Passed [Coulombs]				
	Plain	Standard	Internally Cured	Standard		
	Concrete	Deviation	Concrete	Deviation		
28	4252	116	3822	159		
56	2863	560	2458	55		
91	3174	450	2065	113		
180	2656	226	1239	251		
	0.00	her part para				

Slide 20 of 30

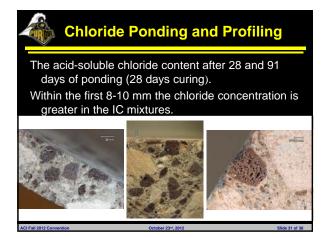


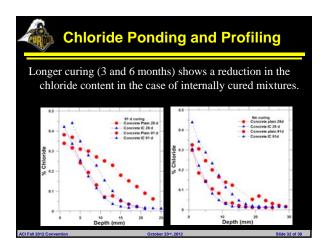
	Monroe County Bridge Deck Concrete	
and at 18	30 days (up to 30 %).	
At 91 days	IC shows lower diffusion coefficient	(1

	Monroe County Bridge Deck Concrete					
Time [day]	Diffusion coefficients (m²/s)					
		Standard		Standard		
	Plain Concrete	deviation	IC Concrete	deviation		
28	1.42E-11	9.89E-13	1.15E-11	5.65E-13		
56	1.26E-11	4.24E-13	8.98E-12	2.83E-13		
91	3.99E-12	4.24E-13	3.42E-12	1.91E-13		
180	4.70E-12	3.46E-13	3.32E-12	1.98E-13		
Convention October 23rd, 2012						

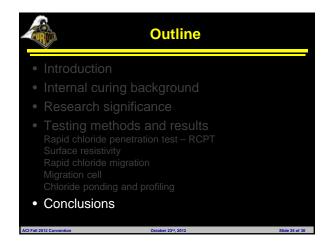

Migration Cell The modeled diffusion coefficients confirm the trend obtained with the Monroe County Bridge Deck Concrete NT Build 492. Time [days] Diffu Plain Concrete IC Concrete IC concretes have 28 8.56E-11 5.78E-11 higher porosity 91 7.67E-11 2.97E-11 and lower Monroe County Bridge Deck Concrete tortuosity. Time [days] Porosity % Tortu Plain Plain STD IC Concre STI C Co Concret 0.0284 28 12.6 0.49 13.0 0.49 0.0421 13.3 0.35 14.5 0.83 0.0377 0.0146 91

ACI Fall 2012 Convention


Chloride Ponding and Profiling


- A 3% NaCl solution is ponded on the surface of the specimen.
- The powder collected at different depths is analyzed to determine the chloride content.

Chloride Ponding and Profiling



Di Bella C., Weiss J.

Slide 36 of 30

Conclusions

- The rapid chloride penetrability of the IC concrete is lower than the plain concrete (approximately 35% at 91 days).
- The electrical resistivity of the IC concrete is higher than the plain concrete (45% at 365 d).
- IC concretes has lower diffusion coefficients (15% and 50 % at 91 d).
- Chloride profile shows higher chloride content at the surface but the rate decreases at lower depths especially with ages.
- Many artifacts are associated with current testing methods such as cut surface in samples, vacuum saturation and conductivity of the LWA.
- This demonstrates that IC concrete has the ability to reduce the chloride transport which has implications on the time to corrosion and service life of reinforced concrete.