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Introduction and Background




Force Diagram of Subsurface Walls - Static
Conditions
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Applicable loads

at-rest earth pressure

surcharge stress from surface loading

compaction stresses from Duncan's method (1991 and 1993)
U = buoyancy due to water table

N = normal stress along basemat
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Force Diagram of Subsurface Walls — Seismic
Without Movement

SEISMIC - NO MOVEMENT
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Applicable loads
at-rest earth pressure

surcharge stress from surface loading

compaction stresses from Duncan's method (1991 and 1993)
U = buoyancy due to water table

V = vertical seismic force

N = normal stress along basemat

base friction using interface coefficient,

traction = friction along building sides = at-rest pressure X piges

Usiqes = friction coefficient along sidewalls of structure

seismic increment = horizontal base forces from SASSI output include all driving forces,
composed of those from seismic, at-rest, and building inertia

Sliding check Compare SASSI basemat horizontal forces (Demand = D)

against basemat frictional/adhesional resistance (Capacity = C).
If FS=C/D > 1.1, then building is stable against sliding
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Force Diagram of Subsurface Walls — Seismic
With Movement

SEISMIC - WITH MOVEMENT
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where N=W -U-V
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Applicable loads

resisting earth pressure is dependent on amount of movement

surcharge stress from surface loading

U = buoyancy due to water table

V = vertical seismic force

N = normal stress along basemat

reduced base friction using interface coefficient, peq

reduced traction = friction along building sides = at-rest pressure X Usiges red

Usiges_red = reduced friction coefficient along sidewalls of structure

seismic increment = horizontal base forces from SASSI output include all driving forces,
composed of those from seismic, at-rest, and building inertia

Sliding check Compare SASSI basemat horizontal driving forces (Demand = D)
against basemat friction/adhesion + side friction + passive resistance (Capacity = C)
using reduced resistance coefficients for frictional/adhesional components
If FS=C/D s 1.1, then building is stable against further sliding
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Standard Practice for Partially or Fully
Buried Liquid-containing Structures



Total Base Shear and Wall Pressures

STANDARD COMMENTARY
8.1—General R8.1—General
Dynamic earth pressures shall be taken into account The lateral forces due to the dynamic earth and groundwater
when computing the base shear of a partially or fully pressures are combined algebraically with the impulsive
buried liquid-containing structure and when designing forces on the tank as in Eq. (4-5).

the walls.

The effects of groundwater table, if present, shall be
included in the calculation of these pressures.

P; = total lateral impulsive force associated with

The coefficient of lateral earth pressure at rest K, shall W;, Ib (kN)
be used in estimating the earth pressures unless it is P, = lateral inertia force of the accelerating wall
demonstrated by calculation that the structure deflects Ww,, Ib (kN)
sufficiently to lower the coefficient to some value v o .
between K, and the active coefficient of lateral earth P, = lateral inertia force of the accelerating roof
pressure K. W, Ib (kN)

, , . P, = total lateral convective force associated
In a pseudostatic analysis, the resultant of the seismic with W, b (kN)
component of the earth pressure shall be assumed to ¢
act at a point 0.6 of the earth height above the base, Peg = lateral force on the buried portion of a tank
and when part or all of the structure is below the water wall due to the dynamic earth and ground-
table, the resultant of the incremental increase in water pressures, b (kN)
groundwater pressure shall be assumed to act at a
point 1/3 of the water depth above the base.

2
V= )P+ P,+P)+P%+Pg (4-5) My = (M + M, + M,)* + M2 (4-10)

Dynamic Earth pressures - Myths, Realities and Practical Ways for Design : October 2012




Practical Earth Pressure Analysis

Select all potential critical interface combinations at the
base and sides of the structure on which to determine the
minimum base frictional resistance.

Compare base and side frictional resistance to seismic at-
rest demand. If C/D > 1.0, then use seismic at-rest
demand to design walls.

If the C/D < FS, then sliding will occur. Then reduce base
and side friction coefficients by 25%. loading side of the
structure will be subject to the active earth pressure, the
seismic lateral active earth pressure increment, and the
building inertia. Increase resisting load on the passive
side, until C/D = 1.0.

V= '\/(Pf.'- PW+ Pr)2+P§- +Pzeg (4'5)
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Sliding or wall rotation must occur for K < Ko

Water procfing membrane 6" mud mat
(lean concrete)

Table 3 — Summary of Eecommended Interface Friction Parameters!

Concrete - Mudmat 0.6 0
Mudmat — C33 sand 058 0
C33 sand — Structural fill (058 0
Mudmat — Soil Type IIC 0.21 12
HDPE - C33 sand 052 0

Mote: 1 Sliding resistance = Vertical [oad * L+ ca ™ area of contact
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Hydrodynamic Pressures (ACI 350)

UNIT "SLICE" )P ~EB_ )
OF WALL HEIGHT — N
(TYP) <8 .'"~C:::‘“\\ .u;ﬁ"::t':‘f\
P L - | pwv\k\:":::\:w\'
o P -
g_.
UNITq, AT HEIGHTy: = [(H y)  (R63.1) Puy~ RESULTANT FORCE AT HEIGHT y (R5.3.1)
P

- R = Wy
R,y = RESULTANT FORCE AT HEIGHT y: = B*q UNITp, =g (R5.3.1)
TOTAL LATERAL FORCE (TLF), P,, = 1028 TLF P, FROM Eq.(4-1a)

HYDROSTATIC PRESSURES, q hy WALL INERTIA UNIT FORCE, Pwy

P = RESULTANT FORCE AT HEIGHTy (R5.3.1)

| P_. = RESULTANT FORCE AT HEIGHT y
Y R cy P,
UNITp, = aly (R5.3.1) UNITp = %Y (R5.3.1)
TLF P; FROM Eq. (4-3) TLF P FROM Eq. (4-4)
IMPULSIVE PRESSURES,_piy CONVECTIVE PRESSURES, p,y

V= J(P+ P+ P)’ + P2+ Py (4-5)
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Seismic Active and At-Rest Lateral Earth
Pressure
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Dynamic Soil Pressures ASCE 4-98

(Wood 1973)

Homogenous elastic soil
(Plane strain)
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Explanation
H = embedment height
Y = distance from base of retaining structure
Y = so0il unit weight
v = Poisson's ratio
0‘2’ = lateral dynamic soil pressure against the retaining

structure for 1.0g horizontal earthquake acceleration

[ I (]

F, =0,,C,yH*

M_=a,DyH? 0.6H

resultant force associated with dynamic soil pressure
distribution shewn in Fig. 3.5-1

resultant overturning moment about base of retaining
structure for pressure distribution in Fig. 3.5-1
horizontal earthquake acceleration (gl

50il unit weight

embedment height

Poisson’s ratio

coefficients as a funection of Poisson's ratio

u Cy D\)
0.5 1.13 0.67
04 1.04 0.63
0.3 0.94 0.56
02 0.87 0.52
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Soil Pressures Sample Calculation

H =20 ft.

0 = tan'(0.25) = 140
Kae = =0.48 EL 0’

K,= 0.31 ~
AK e = 0.48-0.31 = 0.17 EL -5’ ¢ =320
AK e ~ 3/4-0.25 = 0.1875, use 0.17

Ymoist = 120 pCf y = 120 pCf
Yeu = 120-62.4 = 57.6 pcf

Kos = 1-5in(329) = 0.47, use Kos = 0.5 K, =0.25
AKye = 2AK e = 2-0.17 = 0.34 EL -20°

249 (498) psf 249 (498) psf

0’ 0 psf
-5 186 (300) psf 333 (594) psf
147 (294) psf (594) p
-20° >
454 (732) psf 0 psf 936 psf 1390 (1668) psf
Static Earth Pressure Seismic Earth Pressure Hydrostatic Pressure Total Pressure
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Ground Water Considerations

If the backfill is well drained, seismic ground water
pressures need not be considered. In this case,
only hydrostatic pressures are taken into
consideration:

Pw = YwZ

Whitman, RV (1990) suggests that the seismic ground
water thrust exceeds 35% of the hydrostatic thrust for

k,,>0.30.
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Influence of Wall Movement on Intensity of
Earth Pressures in Cohesionless Materials
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Experimental Results




R t E i tal Studies (PEER 2007/06)
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Representative Experimental Results
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Maximum total dynamic pressure
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Detalled Seismic Fluid Soil Structure
Interaction




Fluid Structure Interaction
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Seismic Solil Structure Interaction

Substructuring in the Flexible Volume Method Substructuring in the Substructure Subtraction Method
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Case Study: Intake Pump Station
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Structure Geometry
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Overall Analysis/Design Approach

= The finite element model of the structures is developed
using GT STRUDL Version 29.1.

= Lumped Mass is used to model the Hydrodynamic Load.

= The SSI analysis is performed using Site-Specific Input
Ground Motion and three soil cases (UB, BE and LB).

= The FE model used for the SSI analysis is modified to
obtain the static response of the structure, using GT
STRUDL.

= Only critical panels are designed. Microsoft Excel
Workbook is used to combine element forces and
moments from static and SSI analyses, for these critical
panels.
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Figure 3: Critical walls and slab selected for design in this calculation.
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Hydrodynamic loads
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Comparison of Acceleration Transfer

Functions

SFP Transfer functions
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SSI Model
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Design of Walls and Slabs

Forces and moments computed after combination of seismic
and static results are used for the design of each critical
panel, using a Microsoft Excel Workbook, as outlined next

and described in detall later.
a. Design for In-plane shear using full section cuts.

b. Design vertical and horizontal sections for out-of-plane
moments and axial forces using a P-M interaction
analysis.

c. Conservatively add the reinforcement from steps a and b

d. Check out-of-plane shear for the whole wall, or whole
segments on either side of openings, based on average
shear.

e. Check for punching shear where required.
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Design of Walls and Slabs

Section cut for in-plane
section check A

Resultants at the centroid of
each element are used to check
v P-M interaction. Typical Element
size is 1h to 3h

A Section cut for in-plane
! section check
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Conclusions

Simplified and detailed approached for the dynamic
analysis of embedded liquid containing structures
where presented. Conclusions and recommendations
are as follows:

Additional guidelines are required for the calculations
of dynamic earth pressures. In particular regarding
the use of active or at rest dynamic soil pressures.

Detailed soll structure interaction analyses can
provide additional inside regarding the behavior of
embedded liguid containing structures. However they
are only warranted for critical structures.
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Thank Youl!




