

The Economics, Performance, and Sustainability of Internally Cured Concrete, Part 3

> ACI Fall 2012 Convention October 21 – 24, Toronto, ON

WEB SESSIONS

Early-Age Autogenous Effects in Internally Cured Concrete and Mortar

The Economics, Performance, and Sustainability of Internally Cured Concrete

Presented By: Benjamin E. Byard
Co-Authors: Anton K. Schindler and Robert W. Barnes

Presentation Objectives

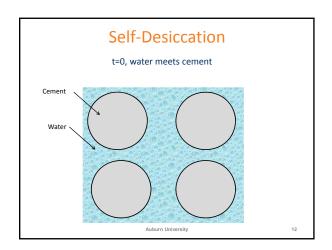
- Evaluate the effect of IC and w/c on the development of stress and internal relative humidity.
- Evaluate the effect of IC and w/c on autogenous shrinkage development in concrete and mortar.

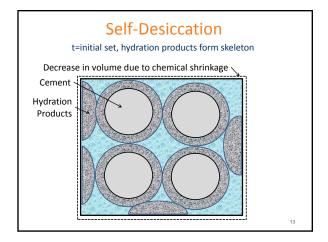
Outline

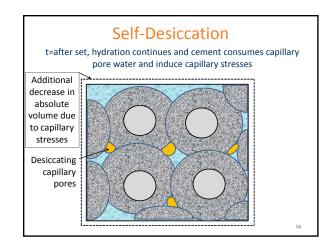
- Stress Development Mechanisms
- Testing Equipment
- Experimental Work
- Results
- Conclusions

Stress Development Mechanisms

Why Does Concrete Crack?

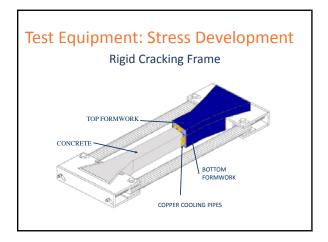

Restraint + Volume Change = Stress


Cracking Occurs When Tensile Stress Exceeds

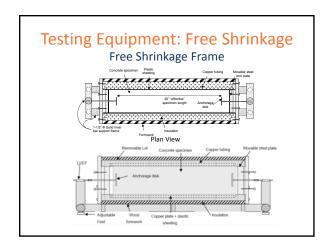

Tensile Capacity

Stress Development Mechanisms

- Early-Age Volume Change Occurs Because
 - -Thermal effects
 - Temperature changes due to hydration
 - Coefficient of thermal expansion
 - Decrease of internal relative humidity
 - Drying due to atmospheric conditions
 - Self desiccation (autogenous shrinkage)


Self-Desiccation? Water moves from LWA in to capillary pores, minimizes Shrinkage desiccation and promotes additional hydration reduced by limiting capillary stresses Pre-Wetted Water can Lightweight move Aggregate ≈0.12 in. Water-**Emptying** Filled Void

Internal Curing Mechanisms


- Why Use Lightweight Aggregate?
 - When batched in the prewetted state, LWA has internal water stored in its pores
 - ullet This water promotes hydration \Rightarrow internal curing
 - Use of saturated lightweight aggregates may alleviate capillary stresses, thus reducing autogenous shrinkage

Outline

- Stress Development Mechanisms
- Testing Equipment
- Experimental Work
- Results
- Conclusions

Outline

- Stress Development Mechanisms
- Testing Equipment
- Experimental Work
- Results
- Conclusions

Experimental Work

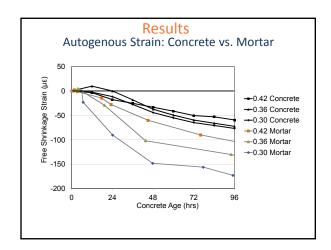
Each concrete mixture was tested:

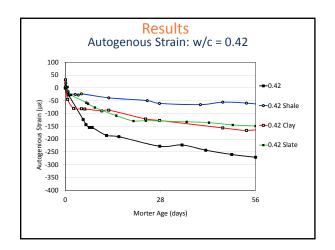
- Restrained Stress Development Isothermal (73 °)
 - Rigid Cracking Frame
- Free-Shrinkage Isothermal (73°F)
 - Concrete: Free-Shrinkage Frame
 - Mortar: Corrugated Tube Method Sieved Mortar
- Internal Relative Humidity Isothermal (73°)
 - Embedded RH Sensors
- Mechanical Properties
 - Matched Cured to Modeled Temperature Profile

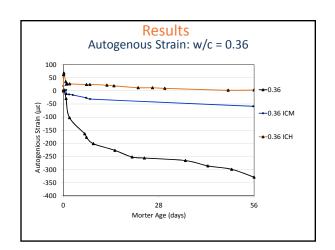
Experimental Work

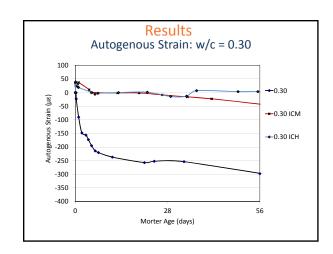
- · Mixtures tested:
 - Control mixtures
 - w/c = 0.42, 0.36, and 0.30
 - Slump: 3 to 5 in.
 - Air Content: 4.5 to 6.5 %
 - Aggregates: siliceous river gravel and natural sand
 - Internal curing mixtures
 - Same w/c, slump, air content, and normal weight aggregates
 - Achieve an equilibrium density greater than 135 pcf
 - Use Bentz method for lightweight aggregate proportioning

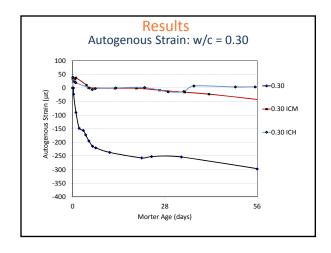
Mixture Proportions

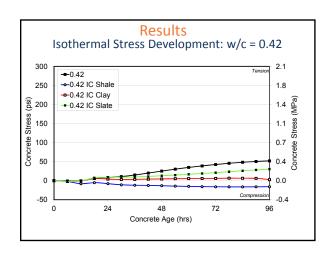

	Item	0.42 RG	0.42 Shale IC	0.42 Clay IC	0.42 Slate IC
<	Water Content (lb/yd³)	260	260	260	260
	Cement Content (lb/yd³)	620	620	620	620
	SSD Normalweight Coarse Aggregate (lb/yd³)	1,761	1,761	1,761	1,761
	SSD Normalweight Fine Aggregate (lb/yd³)	1,210	878	878	818
	SD Shale Lightweight Fine Aggregate (lb/yd³)	0	230	0	0
	SD Clay Lightweight Maximizer (lb/yd³)	0	0	230	0
	SD Slate Lightweight Fine Aggregate (lb/yd³)	0	0	0	276
	Target Total Air Content (%)	5.5	5.5	5.5	5.5
	Water-cement ratio (w/c)	0.42	0.42	0.42	0.42
<	Internal Curing Water (lb/yd³)	0	36	33	22

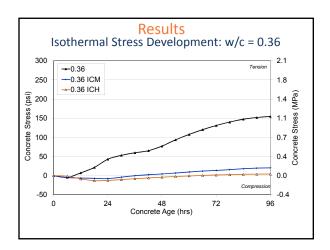

Mixture Proportions

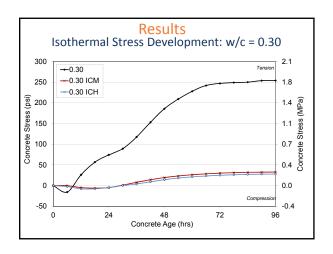

Item	0.36	0.36 ICM	0.36 ICH	0.30	0.30 ICM	0.30 ICH
Water Content (lb/yd³)	238	238	238	218	218	218
Cement Content (lb/yd³)	677	677	677	738	738	738
No. 67 River Gravel (SSD)(lb/yd ³)	1761	1761	1761	1761	1761	1761
TXI Shale Fine Aggregate (SD) (lb/yd3)	0	184	275	0	188	253
Natural Sand (SSD) (lb/yd ³)	1210	956	823	1210	940	867
Target Air (%)	5.5	5.5	5.5	5.5	5.5	5.5
w/cm	0.36	0.36	0.36	0.3	0.3	0.3
Internal Curing Water (lh/yd3)	n	31	46	Λ	32	12

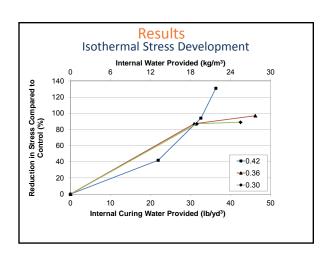

Outline

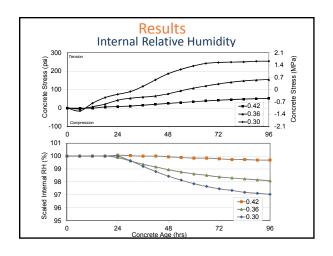

- Stress Development Mechanisms
- Testing Equipment
- Experimental Work
- Results
- Conclusions











Outline

- Stress Development Mechanisms
- Testing Equipment
- Experimental Work
- Results
- Conclusions

Conclusions

- Mortar has a greater autogenous strain than that of concrete, due to the restraint provided by coarse aggregate.
- As the w/c decreases, autogenous stress and strain increases.
- Use of prewetted lightweight aggregates reduces or eliminates the stress development and strain caused by autogenous shrinkage.

Thank You For Your Time!

Questions?

