SEM-MSIA TO QUANTIFY THE COMPOSITION OF FLY ASH GLASSY PHASES AND REACTIVITY IN ALKALINE SOLUTIONS

Katy Aughenbaugh¹, Paul Stutzman², and Maria Juenger¹

¹The University of Texas at Austin
² National Institute of Standards and Technology

Background

□ Fly ash

- □ Crystalline: 10 40 %
 - Measure with XRD + Rietveld analysis
- Glassy: 60 90 %
 - Difficult to characterize
 - Disordered structure
 - Many compositions of glass coexist in a single fly ash, even in a single particle

ST

Background: SEM x-ray mapping (NIST

- □ Field emission SEM with two energy dispersive spectroscopy (EDS) detectors
- 10 kV accelerating voltage, 60,000-80,000 counts per second, 1024 x 768 EDS maps, 256 μs dwell time per pixel with a line average of 2
- 6 minutes to collect each map; four maps were collected and summed
- The saved data represent the actual counts at each pixel location on the specimen

Image Processing

- Post-processing of x-ray maps
 - Median filter applied (radius = 1)
 - Thresholded to remove noise
- Multispectral image analysis (MSIA)
 - Virtually stacked images can be analyzed based on contributions from all images in the stack to group statistically similar pixels

MSIA- Image Stacks

MSIA- Pixel Assignment

- Select training class pixels for each phase
- Multispec assigns all pixels in the image to one of the training classes using an algorithm

Background: Dissolution Methods

Reactivity of glassy phases

HF acid dissolution

Dissolution Methods

□ 2 g (±0.01) fly ash + 10 mL of 8 M NaOH

Fly ash

Atikokan Class F fly ash (Oregon, USA)

Oxides	Limestone (LEGS) wt. %
Al ₂ O ₃	21.58
SiO ₂	47.66
CaO	12.30
Fe_2O_3	4.21
K ₂ O	0.89
MgO	2.70
Na ₂ O	1.93
SO ₃	1.20
TiO ₂	0.97

Bulk Amorphous Content by Rietveld Analysis

MSIA pixel assignment map

Phase designation	S / A	C / S
Aluminosilicate	0.95	-
C-A-S	0.56	0.2
C-A-S 1 (low Al)	1.28	1.0

Aluminosilicate C-A-S C-A-S (low Al)

MSIA area percentages

Reactivity analysis

C-A-S C-A-S (low Al) C-A-S (high Al) Fe-rich Quartz Reaction Product 1 Reaction Product 2 Voids

Fly Ash

After 28 days in 8N NaOH solution

MSIA reactivity map

Phase designation	S / A	C / S
Aluminosilicate	0.95	-
C-A-S	0.56	0.2
C-A-S 1 (low Al)	1.28	1.0
C-A-S 2 (high Al)	0.88	0.8
Reaction Product 1	0.65	0.2
Reaction Product 2	1.56	0.9

Aluminosilicate C-A-S C-A-S (low Al)

Reaction Product 1 Reaction Product 2 Voids

After 8N NaOH exposure

MSIA pixel assignment maps

Fly Ash

After 28 days in 8N NaOH solution

Summary

- The fly ash consisted of an aluminosilicate phase, two C-A-S phases, an iron-rich phase, mullite, and quartz.
- All of the glassy phases appeared reactive in this fly ash.
- Two types of reaction product were observed, with varied S/A ratios and C/S ratios. The high Ca reaction product (Reaction Product 2) appeared to have formed from C-A-S particles by leaching silicon and calcium.

Observations & Future Work

- SEM-MSIA allows qualitative and quantitative (area percentage) analysis of glassy phases in fly ash
- Tracking phases over time after exposure to caustic solutions enables assessment of the relative reactivity of glassy phases
- We are analyzing reactivity for 10 fly ashes

Thank you to NSF CMMI-0926627 for financial support of this work, to Aasiyah Baig for her work on the research, and to NIST for use of their scanning electron microscope.