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BACKGROUND

Interstates 5 and 14
San Fernando earthquake, 1971

Cypress viaduct
Loma Prieta Earthquake, 1989

Fukae Viaduct 
Kobe Earthquake, 1995

Shizunai Bridge
Urakawa-oki Earthquake, 1982
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Lack of lateral reinforcement



BRIDGE COLUMN RETROFITTING TECHNIQUES

Confinement 
Techniques

Active

External

Pre-
stressing

SMA Spirals

Passive

Concrete 
Jacketing

Steel 
Jacketing

ECC 
Jacketing

Ferro 
Cement 

Jacketing

FRP 
Composite 
Jacketing

✓ Flexural and 
shear Stiffness

o Only for circular 
column

✓ Strength, stiffness
and ductility

o Costly
o temperature 

sensitive
o Only for circular 

column

✓ Flexural and shear 
Strength

✓ Low cost
✓ Underwater work
o Biaxial stress state 

causes reduced 
compressive 
strength

✓ Low cost
✓ Readily available 
✓ Good aesthetic
o Corrosion
o Heavy weight
o Difficulty in 

cutting and 
welding

✓ Ductile
✓ High energy 

dissipation
✓ Strain hardening
o High cost
o Limited design 

guidelines

✓ Low cost
✓ Easy application
✓ Both circular and 

rectangular 
column

o Low durability
o Poor aesthetics

✓ High strength
✓ Lightweight and 

easy application
✓ Flexural and 

shear 
enhancement

o Costly
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AVAILABLE RETROFITTING TECHNIQUES

Additional longitudinal 

reinforcement

Additional ties

Original Column

Concrete Jacket

Steel Jacket

Concrete Infill

Original Column

External Pre-stressing

FRP Jacketing

Concrete Jacketing

Steel Jacketing
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EFFECT OF GFRP CONFINEMENT ON THE

COMPRESSIVE STRENGTH OF CONCRETE
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Type of FRP Tensile Strength 
(MPa)

Elastic Modulus
(GPa)

Strain at Break
(%)

CFRP 1720-3690 120-580 0.5-1.9

GFRP 480-1600 35-51 1.2-3.1

AFRP 1720-2540 41-125 1.9-4.4

BFRP 1035-1650 45-59 1.6-3.0

FRP COMPOSITES

• Carbon Fiber Reinforced Polymer (CFRP)
• Glass Fiber Reinforced Polymer (GFRP)
• Aramid Fiber Reinforced Polymer (AFRP)
• Basalt Fiber Reinforced Polymer (BFRP)

Fig: Bi-directional Woven Roving Glass Fibers

+ Polyester Resin (epoxy)

+ Methyl Ethyl Ketone Peroxide (catalyst)

Cheaper

Tensile Strength, Corrosion resistant

Available and reliably serve the purpose

Applied Laboratory for Advanced Materials & Structures



FRP CONFINEMENT MECHANISM

Overlap
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(Mander et al. 1988)

150 mm
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EXPERIMENTAL INVESTIGATION ON MATERIALS

Coupon test for tensile strength Coupon test for bond strength
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PROPERTIES OF GFRP

Table - Properties of GFRP obtained from tests

Properties Value

Tensile strength (MPa) 275-290

Young’s modulus of elasticity (GPa) 13.5-18

Fracture strain (%) 2.2-2.9

Strength of epoxy (MPa) 50

Optimum overlap length (mm) 150

Stress-strain relationship of GFRP Bond between GFRP layers
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APPLICATION OF GFRP ON TEST SPECIMENS

Priming Epoxy on glass 
fiber

First layer Pressing with 
grooved roller

Last layer

Control cylinders GFRP confined cylinders
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Specimen

Type 22

22 MPa

Old Infrastructure

Type 32

32 MPa

Recent Construction



EFFECT OF GFRP CONFINEMENT

Stress-strain curves for Type 22 and Type 32 cylinders
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FAILURE MODE

Control Specimen 1 layer of GFRP 
confinement

2 layers of GFRP 
confinement

3 layers of GFRP 
confinement
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SUMMARY

• GFRP confinement can significantly improve compressive strength and strain capacity of 
low strength concrete.

• Multi-layer of GFRP (thick) show better mechanical properties than a single layer.

• Number of layer =      Compression carrying capacity + sudden blast type failure X

• Two layer of GFRP is considered to be the optimum confinement as it improves the 
compressive strength by 101% and shows gradual failure of fibers.
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CYCLIC PERFORMANCE OF RC CIRCULAR BRIDGE PIERS

REPAIRED AND RETROFITTED WITH GFRP
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DESIGN AND GEOMETRY OF BRIDGE PIER

900 mm

N8

N7

N6

N5

N4

N3

N2

N1

Beam element

Frame element

Zero length

Spring element

Axial load

Lateral load

Deck

Girder

Pier

Footing

Bearing 

pad

4.6 m

5.2 m

300 mm

18-10M

6 mm dia hoops

50 mm dia 

Plastic Pipe

Loading Direction

20 mm Clear Cover

Prototype
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Test specimen Cross-sectional detailing



Table : Geometric comparison of prototype and test specimens

Description of properties Prototype Test Specimens

Diameter (mm) 900 300

Effective height (m) 5.2 1.73

Clear cover (mm) 60 20

Longitudinal reinforcement ratio (%) 2.52 2.55

Volumetric ratio of lateral reinforcement (%) 0.173 0.178

Tie spacing (mm) 15M @ 300 6mm @ 75

Axial Load, P/f’cAg (%) 10 10

Yield Strength of Longitudinal reinforcement (MPa) 450 450

Yield Strength of transverse reinforcement (MPa) 400 400

Compressive strength of concrete (MPa) 35 35

Thickness of GFRP layer (mm) 1.55

DESIGN AND GEOMETRY OF BRIDGE PIER
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TEST SETUP

Setup for bridge pier test under lateral cyclic load

Post tension rebar

Load cell

Strong floor

Data acquisition 
system

Controller

LVDTs

Hydraulic
actuator

Strain gauges

Steel plate

Specimen
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TEST SETUP

Applied loading protocol on test specimen
(Chai et al. 1991, Ghannoum et al. 2012, Teng et al. 2013)
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5.1 mm/min 15.3 mm/min

Pseudo-static loading Rate:
(Ghannoum et al. 2012)

Before Yielding: 5.1 mm/min

After Yielding: 15.3 mm/min



TEST SETUP

GFRP retrofitted pier under lateral cyclic test
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REPAIRING AND RETROFITTING METHOD

Damaged Pier Vertical Support and
Axial Load Removal

Formwork for pouring 
repair concrete

Repaired pier Repaired pier with 
GFRP confinement
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CYCLIC RESPONSE

Deficient Pier Repaired Pier

Maximum
Force
(kN)

Maximum
Drift
(%)

Deficient 62.3 4

Repaired >78            25% >6.9        73%

Retrofitted >79            27% >6.9        73%

Retrofitted Pier Skeleton Curve
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STRAIN RESPONSE

Steel (deficient) Steel (repaired) Steel (retrofitted) GFRP (repaired)

Concrete (deficient) Concrete (repaired) Concrete (retrofitted) GFRP (retrofitted)
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MOMENT-CURVATURE RESPONSE

Measurement of curvature (φ)
(Ibrahim et al. 2016)

M

d

l

Dt Dc

N.A.

d

ec

et j

𝑁𝐴 =
𝑑 ∗ 𝜀𝑐
𝜀𝑡 + 𝜀𝑐

𝜑 =
𝜀𝑐
𝑁𝐴

=
𝜀𝑡

𝑑 − 𝑁𝐴
=

𝜀𝑡| + |𝜀𝑐
𝑑

𝑀 = 𝐹 ∗ 𝐿𝑒

Moment-curvature relationship
obtained from test

Applied Laboratory for Advanced Materials & Structures

0

20

40

60

80

100

120

140

0 0.0001 0.0002 0.0003

M
o
m

en
t 

(K
N

-m
)

Curvature (1/mm)

Deficient

Repaired

Retrofitted



DUCTILITY ANALYSIS

Table: Ductility of Piers obtained from test results

Specimen

type

Yielding Ultimate Displacement

ductility

Curvature 

ductilityForce

(kN)

Displacement

(mm)

Moment

(kN-m)

Curvature

(1/mm)

Force

(kN)

Displacement

(mm)

Moment

(kN-m)

Curvature

(1/mm)

Deficient 38.9 19.6 64.38 3.52x10-5 62.3 69.3 103.11 9.64x10-5 3.54 2.74

Repaired 43.13 25.2 71.38 5.25x10-5 77.9 120 127.6 2.9x10-4 >4.76 >5.52

Retrofitted 39.1 19.2 64.71 3.44x10-5 79 120 130.75 2.66x10-4 >6.25 >7.73

Yield / Ultimate

Strain

Strain Response

• Force
• Moment

Cyclic Response

• Displacement

Moment-Curvature 
Response

• Curvature
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ENERGY DISSIPATION AND RESIDUAL DRIFT

Cumulative energy dissipation Residual Drift
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FAILURE MODE

Diagonal 

shear crack

Buckling of 

reinforcement

Horizontal 

cracks

Spalling 

concrete

Fractured hoops in 

plastic hinge region
Distorted 

GFRP

Distorted 

GFRP

Deficient Pier Repaired Pier Retrofitted Pier
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SUMMARY

• For the seismically damaged RC circular piers, repairing and retrofitting technique using 
passive confinement demonstrated the purpose of restoring strength and ductility of piers.

• The deficient pier once confined with GFRP jacketing showed increased lateral capacity 
(27%) and ductility (73%).

• From the experimental results it was found that, initial stiffness doesn’t change for passive 
confinement techniques like GFRP jacketing.

• Except some horizontal distortions, GFRP repaired and retrofitted pier didn’t show any 
significant damage up to the applied drift in the test.

• Damaged column repaired and strengthened with GFRP can perform similar to a 
retrofitted column under constant axial load and cyclic lateral load.
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