This Webinar is cosponsored by ACI and ICRI. The ideas expressed, however, are those of the speakers and do not necessarily reflect the views of ACI, ICRI, or their committees. The audience is expected to exercise judgment as to the appropriate application of the information.

Learning Objectives:

- To recognize why a design code specific to concrete repair and rehabilitation is needed to ensure safe structures.
- To understand the difference between the ACI 562 Repair Code and the many guides to repair that are available.
- To describe the governing philosophy and organization behind the creation of the ACI 562 Repair Code and
- To identify the scope of each chapter of the new ACI 562 Repair Code.
THE ACI 562 REPAIR CODE

HOW DOES IT AFFECT YOUR CONCRETE REPAIR PROJECT?

KEITH KESNER – CHAIR ACI 562
LARRY KAHN – FORMER CHAIR ACI 562

Presentation Goals

• Background on Code Requirements for Evaluation, Repair and Rehabilitation of Concrete Buildings (ACI 562-13)
• Code development process
• How ACI 562 works – How it affects your project
 Key provisions
 Changes in concrete repair practice

ACI 562 – Key Points

• Developed to improve concrete repair practice
• Performance-based code
• Help design professionals and building officials
• Work in progress
 Committee interested in feedback
 Working on adoption into IEBC-18
Presentation Outline

• Introduction
 – Why a Repair Code
 – Why not a Repair Code
• Code Attributes
 – Building Code Process
 – Codes vs. Guidelines
 – Code vs. Commentary
• ACI 562
 – Development
 – Revision of Existing Codes
 – Philosophy & Organization
 – Responsibilities
 – Changes in IBC / IEBC
• Specifics of 562
 – When Applicable
 – Maintenance
 – Preliminary Evaluation
 – Evaluation
 – Analysis
 – Load Testing
 – Reinforcement
 – Durability
 – Construction
• Future of 562
 – Going Forward
 – Impact

Why a Repair Code?

• Vision 2020 – ACI Strategic Development
 Create a repair/rehabilitation code to:
 Establish evaluation, design, materials and construction practices
 Raise level of repair/protection performance
 Establish clear responsibilities
 Provide Building Officials with means to issue permits
• Large segment of construction industry
 20 Billion dollars
 8 Billion dollars in corrosion damage

Why a Repair Code?

• Repair performance
 COE - 50% of repairs are not performing satisfactorily
 Design errors
 Construction errors
 Material selection errors
Con Rep Net
 5 years – 80% of repairs are satisfactory
 10 years – 30% of repairs are satisfactory
 25 years – 10% of repairs are satisfactory
Why a Repair Code?

- Lack of specific code requirements:
 Variations in repair practice
 Different levels of safety / reliability
 No direction for building officials

- Challenges of existing structures
 Hidden damage
 Unknown structural conditions

Why not a Repair Code?

- Complicated process
 Took 7 years to develop

- Lack of consensus on practice
 Lots of arguments

- Establish minimum practice requirements
 What are minimum requirements?

- Concern about limiting creative solutions

- Fear of something new

Motivation

- ACI 318 Survey
 One-half use for repair of existing structures
 Use for non-building structures

- Conclusions from ACI 318 Survey
 ACI 318 functioning beyond its intent
 Code guidance for repairs is needed
Building Codes

- Developed by consensus process (ANSI approved)
 - Written by code writing organization
 - Code committee
 - Membership balance
 - Producers / Users / General Interest
- Written for design professionals
 - Architects and engineers
- Adopted in law
 - General building code
 - Feeder building codes – ACI 318

Code vs. Commentary vs. Guidelines

- Code
 - Adopted by regulatory agencies
 - Mandatory language (shall not should)
 - Establish required practice
- Commentary – usually written by code committee
 - Non-mandatory language (should not shall)
 - Guidance on how to satisfy code
- Guidelines
 - Non-mandatory language (should not shall)
 - Establish recommended practice

How was ACI 562 Developed?

- Committee formed in Spring 2006
- ACI code committee – “Evaluation, Repair and Rehabilitation of Concrete Buildings”
- Starting points
 - Existing U.S. building codes
 - Existing international repair codes
 - Philosophy of code
Review of Existing Codes

- U.S. Codes
 - ACI 318, Chapter 20
 - IBC, Chapter 34
- 5% rule trigger for upgrade to current code
- Repair requirements vary with edition
 - International Existing Building Code
- First published in 2003
- ACI 562 developed for adoption into IEBC

ACI 562 – Philosophy

- Emphasize performance based rather than prescriptive requirements
- Encourage creativity and flexibility
- Promote innovation and new materials
- Establish responsibilities
- Enhance life safety (equivalent safety)
- Extend service life
- Provide sustainable and economic alternatives
- Use ACI and other “code” documents by reference

Responsibilities

- Licensed Design Professional
 - Evaluation
 - Repair & durability design
- Constructor – through plans and specifications
 - Follow evaluation and design specifications
 - Report uncovered defects
 - Construction sequencing, means & methods
- Owner – through general building code
 - Known conditions and maintenance
Design Basis Code

• General building code under which the repair project is completed
• Possible design basis codes:
 IBC
 IEBC
 Local building code, i.e., NYC Building Code
 ACI 318
 Combination of ACI 318 and 562

When do structures need to satisfy current codes?

• IBC – Chapter 34
 If alterations or additions increase force in a structural element by more than 5%
 Repairs to elements that are found to unsound or structurally deficient
• IEBC
 When substantial structural damage has occurred
• When required by a local code or building official

Changes in IBC and IEBC

• 2012 Cycle (2015 IBC Code)
 ICC Board approves deletion of Chapter 34 of the IBC in favor of reference to the IEBC
• 2015 IBC
 Will no longer include Chapter 34 entitled Existing Structures
• 2015 IEBC
 Adopted for use in most states and jurisdictions
ACI 562 - Applicability

- Existing concrete buildings
- Superstructure, foundations (slabs), precast elements – structural load path
- Structural vs. nonstructural – “Unsafe”
- Composite members – concrete
- Nonbuilding structures when required

Preliminary Evaluation

- Preliminary evaluation
 - Determine extent of structural damage present
 - Evaluation based upon in-place conditions
 - Can use assumed material properties
 - Establish design basis code
- Substantial structural damage?
 - Determines if compliance with current code is required

Substantial Structural Damage

- Defined in IEBC
 - Reduction of greater than 33% to the vertical elements of the lateral force resisting system
 - Reduction of greater than 20% of the vertical capacity in an area that supports more than 30% of the structure’s area
- Requirements vary with IEBC edition
- Trigger for upgrade of structure to current code requirements
Evaluation & Analysis

- Preliminary evaluation
- When there is reason to question performance or safety
- Structural assessment/structural analysis
- As-measured section properties and dimensions
- Material properties
 - Available documents + historical tables
 - Tests

Evaluation & Analysis - Testing

- Destructive & nondestructive [6.4]
- Cores (ASTM C42 & C823) [6.4.3]
- NDT when valid correlation is established [6.4.3.1]
- Steel Reinforcement: historical values, samples (ASTM A370) [6.4.4 - 6.4.10]

Load and Resistance Factors

- Resistance, capacity reduction factors, Φ [5.3 & 5.4]
 - Measured properties [6.3]
 - Failure mode
 - Historic material properties [Table 6.3.1]
- Load Factors – Default values ASCE [6.3]
Loads and Load Combinations

- Essentially ASCE/SEI 7 (ACI 318) [5.1.6]
- Construction, unoccupied ASCE/SEI 37 [5.1.4]
- External reinforcing systems [5.5]
 \[U_{ue} = 1.2D + 0.5L + A_d + 0.2S \]
 Fire + elevated temperature with FRP
 External unprotected reinforcement

Φ factors

- Encourage confirmation of material properties
- Φ factors from ACI-318
 No confirmation of material properties
- ACI 318 Chapter 20 if material properties are confirmed
 \[\Phi_{tension} = 1 \]
 \[\Phi_{compression} = 0.9 \]
 \[\Phi_{shear} = 0.8 \]

Typical Repair Project

- Preliminary evaluation
 Determination if substantial structural damage has occurred
 IEBC trigger for upgrade to current code requirements
 Establish design basis code
- Must consider
 Impact of damage present
 In-place geometry and material properties
Typical Repair Project

• Structural evaluation [6.1]
 Structural assessment, structural analysis or both
• Structural assessment?
 How bad is the structure

Typical Repair Project

• Structural analysis – required when?
 Preliminary evaluation results
 Reason to question performance
 Insufficient information
• Similar elements?
 Consider if additional elements require evaluation and repair

Critical Code Sections [6.1]

• “If the strength of a structure is known, improvements to the strength, serviceability, durability, and fire performance of a structure shall be permitted without performing a structural evaluation.”

Voluntary improvements can be made

Intent is to simplify procedure
Critical Code Sections [6.1]

- "If determined by the structural assessment that the strength of a structure is not in question, structural analysis is not required."

 Performance criteria

 Responsibility of LDP to determine

Critical Code Sections [6.1]

- "Where repairs are required on an element in a structure, it shall be determined if similar elements throughout the structure also require evaluation."

 Repetitive elements

 Isolated repairs may not be acceptable

Unknown Structural Capacity

- Lack of design drawings
 - Determine geometry
 - Determine loads

- In-situ conditions
 - ACI 201
 - ACI 228.1
 - ACI 364
 - ACI 437
 - ASCE Guidelines
Unknown Structural Capacity

- Unknown material properties
 - Historical values
 - Physical testing
- # of samples?
- # of elements?
- NDT – with correlation

Analysis, Design and Durability

- Performance based – 3D, nonlinear or… [6.5]
 - Make a patch or add a structural wall
- Actual load and force distribution [6.5.4]
- Reinforcement and repair materials [7.5.1]
 - e.g. FRP’s and polymer concretes
- Compatibility [7.3.2]
- Fire resistance [7.9]
- Service life [8.1.2]

Seismic Resistance

- ASCE/SEI 31 – Seismic Evaluation
- ASCE/SEI 41 – Seismic Rehabilitation [1.1.8 & 7.6.4]
- ASCE/SEI Guidelines used in IBC and IEBC
Load Testing

• ACI 437-13 [6.8]
 New code for load testing
• Why not ACI 318-11 Chapter 20?

Load Testing

• Load testing (ACI 437-13) [6.8]
 More rational for existing structures
 Lower DL
 Shorter hold
 Service load evaluation
• Model testing
 Supplement analysis

Design of Structural Repairs

• Strength & Serviceability [7.1, 7.2]
• Effect of repair on structural system [7.3]
• Composite behavior
 Tensile strength
 Adhesives
 Pull-off test

 Bond: 1.5 x required ++ [7.4]
Repair Design

- Bond [7.4]
 - Critical to performance of a repair
 - Bond strength greater than 1.5 times the required bond capacity
 - Tensile strength of concrete
- Testing – ASTM C 1583
- $\sqrt{f'}c$ in lieu of testing

Supplemental measures

Reinforcing

- FRP (ACI 440.6) and steel
- Fire (external reinforcement)
 - $U_{u} = 1.2D + 0.5L + A_{k} + 0.2S$
- Existing prestressing
- Supplemental posttensioning
 - Secondary effects
 - Define repair sequence: removal, placement, stressing

Durability

- Durable materials [8.1.1 & 8.1.2]
 - Interaction with existing structure (compatibility)
 - In environment
 - Anticipated maintenance
- Corrosion protection & cover [8.2]
Durability

- Corrosion & deterioration of reinforcement [8.4]
 - Corrosive environment
 - Existing reinforcement
 - Galvanic action
- Cracks [8.3]

Construction

- Stability and shoring
 - Designed by an LDP
 - Consider: sequence, in-situ conditions, changes in conditions
- Temporary conditions
 - ASCE/SEI 37 when feasible
 - Stalled projects?
- Environmental
 - Instructions to contractor
 - Report new conditions
 - Control of debris
Controversy – Maintenance

- To assure durable repairs
- Protect design professionals
- "Maintenance recommendations shall be documented…” [1.5.2 & 1.7]
- “A maintenance protocol should be provided…” [1.7C]

Typical Repair Project

- Quality Assurance Plan [10.1]
 Required by general building code
 Part of contract documents
- Maintenance Plan [1.5.2 and 1.7]
 Document specific requirements for owner
 Protect design professional

Quality Assurance

- Require testing and inspection
 Commentary list of items to inspect
- Repair inspectors should be qualified by demonstrating competence
- LDP may inspect their projects
- Testing as required by LDP
- Existing conditions shall not be concealed
 Construction observation
Summary of ACI 562

- Performance-based code for existing concrete structures
- Intended to improve repair practice
 - More flexibility
 - More creativity
 - Greater ability to accommodate new materials
- Help design professionals
- Rational basis for repair permits

ACI 562 - Going Forward

- Improve the state of practice
- Incorporate work of other committees / groups
 - Repository of knowledge
 - ACI Guidelines
 - ICRI Documents
- Education on using ACI 562 - 13
 - ICRI / ACI Guide to Use of ACI 562
 - Seminars
 - Presentations

Impact of ACI 562

- Cost savings for repair of repair in $ billions
- Code requires accountability of both engineers and contractors
- Repair industry is a serious endeavor
 - Education and skills required
- Engineering requirements leading to clear specifications and increased quality
- Safer structures
Acknowledgements

15 Engineers, 4 Academics, 3 Contractors, 1 Material supplier, 1 Owner, 1 Building official

Thank You

Questions?
Send to: mike.tholen@concrete.org

Thank you
For the most up-to-date information please visit the American Concrete Institute at: www.concrete.org